Постройте наклоненную призму в основании которой лежит прямоугольный треугольник. обозначьте и выпишите: вершины стороны оснований боковые ребра основания высоту
биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
значит, это квадрат.
Объяснение:
- источник
биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
значит, это квадрат.
Объяснение:
- источник