Постройте окружность, возьмите точку b вне окружности, проведите касательные к окружности и измерьте радиус, отрезки касательных и расстояние от центра окружности до точки b. проверьте, выполняется ли теорема пифагора
1)Найдём длину и уравнение медианы BM. Поскольку BM - медиана, то M - середина стороны AC. Воспользуемся формулой для вычисления координат середины отрезка, поскольк мы знаем координаты его концов(отрезок AC):
x = (x1 + x2) / 2 = 5 + 0 / 2 = 2.5
y = (y1 + y2) / 2 = (-6 + 10) / 2 = 2
Таким образом, M(2.5;2)
Теперь, зная координаты точки B и координаты точки M по формуле найдём длину отрезка BM:
|BM| = √(x-x₀)²+(y-y₀)², где x,y - абсцисса и ордината конца отрезка, x₀,y₀ - абсцисса и ордината начала отрезка. Подставим и вычислим:
|BM| = √(2.5+3)²+(2 - 4)² = √(30.25 + 4) = √34.25 (советую проверить потом, верно ли я везде посчитал, так как в спешке всё делаю, но сама суть думаю, ясна).
Теперь нужно найти уравнение медианы: искать будем его в общем виде y = kx + b(нужно найти k и b). Учитывая тот факт, что раз прямая проходит через точки B и M, её координаты должны удовлетворять формуле. Подставим координаты обоих точек в общее уравнение и составим и решим систему:
4 = -3k + b 3k - b = -4 5.5k = -2 k = -2/5.5
2 = 2.5k + b 2.5k + b = 2 3k - b = 4 b = 3k - 4 = -6/5.5 - 4 (ну вот, где-то точно в вычислениях ошибся)
b = -28/5.5(так вроде посчитал).
Теперь подставим k и b в общий вид, и получим то, что хотели, то есть уравнение медианы:
y = -2/5.5 k - 28/5.5 (коэффициенты получились не самые хорошие, это может быть связано как с вычислительной ошибкой, так и с самим условием, хотя всё проверял, по идее всё верно подсчитано должно быть)
2)Длину высоты CH найти ещё проще. Совместим точку H с началом координат. Тогда получим, что координаты точки H(0;0), а точки C(0;10). Найдём длину отрезка CH:его длина равна 10(можно по предыдущей формуле, а можно догадаться, что разница между координатами этих точек равна
Объяснение:
1. Точка Т – середина отрезка МР. Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)Bина отрезка МР. Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра одите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугкружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугольной трапеции с основаниями ВC . Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугольной трапеции с основаниями ВC и АD, А(-2;3)C(-1;5) Напишите уравнение медианы В
1)Найдём длину и уравнение медианы BM. Поскольку BM - медиана, то M - середина стороны AC. Воспользуемся формулой для вычисления координат середины отрезка, поскольк мы знаем координаты его концов(отрезок AC):
x = (x1 + x2) / 2 = 5 + 0 / 2 = 2.5
y = (y1 + y2) / 2 = (-6 + 10) / 2 = 2
Таким образом, M(2.5;2)
Теперь, зная координаты точки B и координаты точки M по формуле найдём длину отрезка BM:
|BM| = √(x-x₀)²+(y-y₀)², где x,y - абсцисса и ордината конца отрезка, x₀,y₀ - абсцисса и ордината начала отрезка. Подставим и вычислим:
|BM| = √(2.5+3)²+(2 - 4)² = √(30.25 + 4) = √34.25 (советую проверить потом, верно ли я везде посчитал, так как в спешке всё делаю, но сама суть думаю, ясна).
Теперь нужно найти уравнение медианы: искать будем его в общем виде y = kx + b(нужно найти k и b). Учитывая тот факт, что раз прямая проходит через точки B и M, её координаты должны удовлетворять формуле. Подставим координаты обоих точек в общее уравнение и составим и решим систему:
4 = -3k + b 3k - b = -4 5.5k = -2 k = -2/5.5
2 = 2.5k + b 2.5k + b = 2 3k - b = 4 b = 3k - 4 = -6/5.5 - 4 (ну вот, где-то точно в вычислениях ошибся)
b = -28/5.5(так вроде посчитал).
Теперь подставим k и b в общий вид, и получим то, что хотели, то есть уравнение медианы:
y = -2/5.5 k - 28/5.5 (коэффициенты получились не самые хорошие, это может быть связано как с вычислительной ошибкой, так и с самим условием, хотя всё проверял, по идее всё верно подсчитано должно быть)
2)Длину высоты CH найти ещё проще. Совместим точку H с началом координат. Тогда получим, что координаты точки H(0;0), а точки C(0;10). Найдём длину отрезка CH:его длина равна 10(можно по предыдущей формуле, а можно догадаться, что разница между координатами этих точек равна
Объяснение: