Постройте прямоугольник АВСЕ. Проведите в нём диагонали и их току пересечения обозначьте О. Отметьте и укажите на чертеже а) пару сонаправленных векторов, б) пару противоположно
правленных векторов, в) нулевой вектор, г) пару не коллинеарных векторов.
к этому заданию рисунок не нужен
решение:
раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см
средняя линия равна полусумме оснований = 14/2 = 7 см
2)
<BOC = <AOD (вертикальные)
BC ll AD (основания трапеции)
<BCA = <CAD (накрест лежащие)
<CBO = <ODA (накрест лежащие)==>
==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5)
<KAD = <DAK (накрест лежащие)
<DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==>
==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см
ВС = ВК + КС = 4 + 6 = 10 см
S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)
В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD;
Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2;
Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4;
Таким образом, AK = KD = 48; KE = 24; BK = 72;
AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13;
AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
665