Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
Если малость схитрить, то можно выбрать удобный частный случай и решить для него. Например, для прямоугольного треугольника ABC с прямым углом у вершины B. Тогда три искомые описанные окружности будут иметь диаметры равные длинам сторон этого треугольника: 7 (меньший катет) , 14 (гипотенуза) и 14*корень(3)/2 (больший катет). В сумме диаметры составят 7*(3+корень(3)), а сумма радиусов будет вдвое меньше.
Но это, конечно, фейковое решение основанное на уверенности в том, что условие правильное и задача однозначно решается.
Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
Если малость схитрить, то можно выбрать удобный частный случай и решить для него. Например, для прямоугольного треугольника ABC с прямым углом у вершины B. Тогда три искомые описанные окружности будут иметь диаметры равные длинам сторон этого треугольника: 7 (меньший катет) , 14 (гипотенуза) и 14*корень(3)/2 (больший катет). В сумме диаметры составят 7*(3+корень(3)), а сумма радиусов будет вдвое меньше.
Но это, конечно, фейковое решение основанное на уверенности в том, что условие правильное и задача однозначно решается.