Построим средние линии А1С1, А1В1 и В1С1. Используя свойство средней линии (средняя линия треуг-ка параллельна одной из сторон и равна половине этой стороны), получаем треугольник А1В1С1, стороны которого вдвое меньше соответственных сторон треугольника АВС: А1В1 : АВ = В1С1 : ВС =А1С1 : АС = 1 : 2 Поскольку три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то они подобны. Для подобного треугольника А1В1С1 соотношение сторон будет таким же: 7:8:11. Пусть они будут 7х, 8х и 11х. Зная периметр, запишем: 7х+8х+11х=52 26х=52 х=2 А1В1=7*2=14 см, В1С1=8*2=16 см, А1С1=11*2=22 см
А1В1 : АВ = В1С1 : ВС =А1С1 : АС = 1 : 2
Поскольку три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то они подобны. Для подобного треугольника А1В1С1 соотношение сторон будет таким же: 7:8:11. Пусть они будут 7х, 8х и 11х. Зная периметр, запишем:
7х+8х+11х=52
26х=52
х=2
А1В1=7*2=14 см, В1С1=8*2=16 см, А1С1=11*2=22 см
По теореме косинусов :
b² =a²+c² -2ac*cosB ;
b=√(14² +25² - 2*14*25*cos101°) ≈ 30,9 .
По теореме синусов :
a/sinA = b/sinB =c/sinC ;
sinA =(a/b)*sinB =(14/30,9)*sin101°= 0,428 ⇒ <A ≈25° ;
<C =180° -(<A+<B) = 180° -(<25°+101°) = 54°.
* * * или sinC =(c/b)*sinB =(25/30,9)*sin101°=0,794⇒<C =54° . * * *
2) a = 34; c = 15; < А = 131°.
По теореме синусов :
b/sinB = a/sinA = c/sinC ;
sinC =(c/a)*sinA =(15/34)*sin131° ≈0,33 ⇒<C≈ 19° .
<B =180° - (<A+<C) = 180° -(131° +19°) = 30°.
b =c*(sinB/sinC) =15*(sin30°/0,33) =22,72.