постройте сечение правильной четырехугольной пирамиды,если секущая плоскость проходит через ребро АВ и середину ребра SC.Найдите площадь этого сечения,если АВ=SA=4см
Баня - это квадрат с цифрой 4, т.к. его сторона 2*3 = 6 м, а площадь 6*6 = 36 кв.м. Других фигур такой площади на плане нет.
Бак с водой - это цифра 5, т.к. все значения остальных цифр мы знаем.
Нужно найти расстояние от левого верхнего угла бака до правого нижнего угла бани (см. рис.).
Построим прямоугольный треугольник ABC, в котором гипотенуза AB - это расстояние от бака до бани.
Длина стороны AC 8 клеток или 2*8 = 16 метров, стороны BC - 6 клеток или 2*6 = 12 метров.
Теорема Пифагора звучит так, квадрат гипотенузы равен сумме квадратов катетов. Автору, который давал ответ, в конце надо было корень извлечь из 400, окончательный ответ получится 20
Здесь даже чертеж не нужен (хотя он для наглядности приложен)
Помним теорему синусов треугольника:
Где угол лежит напротив стороны , угол лежит напротив стороны , а угол лежит напротив стороны , а - радиус описанной около треугольника окружности (правда, окружность в этой задаче нам не нужна)
Учитывая, что
Но тогда теорему синусов можно переписать так:
Что и требовалось доказать.
Можно ещё по-другому пойти.
Смотрим на рисунок. (нижние углы), то есть треугольник равнобедренный с основанием , значит, боковые стороны равны, то есть
Далее, , то треугольник равнобедренный с основанием , боковые стороны равны, то есть
Бак с водой - это цифра 5, т.к. все значения остальных цифр мы знаем.
Нужно найти расстояние от левого верхнего угла бака до правого нижнего угла бани (см. рис.).
Построим прямоугольный треугольник ABC, в котором гипотенуза AB - это расстояние от бака до бани.
Длина стороны AC 8 клеток или 2*8 = 16 метров, стороны BC - 6 клеток или 2*6 = 12 метров.
Теорема Пифагора звучит так, квадрат гипотенузы равен сумме квадратов катетов. Автору, который давал ответ, в конце надо было корень извлечь из 400, окончательный ответ получится 20
Здесь даже чертеж не нужен (хотя он для наглядности приложен)
Помним теорему синусов треугольника:
Где угол лежит напротив стороны , угол лежит напротив стороны , а угол лежит напротив стороны , а - радиус описанной около треугольника окружности (правда, окружность в этой задаче нам не нужна)
Учитывая, что
Но тогда теорему синусов можно переписать так:
Что и требовалось доказать.
Можно ещё по-другому пойти.
Смотрим на рисунок. (нижние углы), то есть треугольник равнобедренный с основанием , значит, боковые стороны равны, то есть
Далее, , то треугольник равнобедренный с основанием , боковые стороны равны, то есть
Ну и завершающий вывод:
Что и требовалось доказать.