В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
0689433382
0689433382
16.09.2022 20:30 •  Геометрия

 Постройте сечение правильной четырехугольной пирамиды SABCD, если секущая плоскость проходит через ребро AB и середину ребра SC. Найдите площадь этого сечения, если AB= SA=4 см.                                                                                                 

Показать ответ
Ответ:
Renatka96
Renatka96
28.07.2022 18:08

\frac{V_p}{V_k} =\frac{2\sin(\alpha )}{\pi }

Объяснение:

Объём пирамиды равен

V_p=\frac{1}{3} S_{o}h

объём конуса

V_k=\frac{1}{3} \pi R^{2}h

Их отношение будет равно

\frac{V_p}{V_k} =\frac{S_o}{\pi r^{2} }

То есть отношение площадей

На рисунке представлено основание.

AB=BC и CD=DA

Угол между AB и BC равен α

Прямая DB будет проходить через центр окружности и являться диаметром, поскольку одновременно является биссектрисой углов ABC и CDA.

То есть DB = 2r

Треугольник ABD будет прямоугольным с прямым углом A, поскольку он опирается на дугу в 180 градусов.

ABD = α/2 заменим для простоты на β

Тогда

AB=BD\cos(\beta )=2r\cos(\beta ); \\AD=BD\cos(\frac{\pi }{2} - \beta )=BD\sin(\beta)=2r\sin(\beta)

Площадь треугольника будет

S_{ABD} =\frac{1}{2} AB*AD=\frac{2r\cos(\beta)*2r\sin(\beta)}{2} =r^{2} 2\cos(\beta)\sin(\beta) =r^{2} \sin(2\beta )=r^{2} \sin(\alpha )

Площадь основания равна двум таким площадям, итого получаем

\frac{V_p}{V_k} =\frac{2S_{ABD}}{\pi r^{2} }=\frac{2r^{2} \sin(\alpha )}{\pi r^{2} }=\frac{2\sin(\alpha )}{\pi }


Основанием пирамиды, вписанной в конус, служит четырехугольник, у которого смежные стороны попарно р
0,0(0 оценок)
Ответ:
vlad1435
vlad1435
01.05.2022 22:08

Условие задачи неполное. Должно быть так:

Основанием тетраэдра МАBC служит треугольник АBC в котором AB = BC и АС = 2а√3. Точка О принадлежит АС отрезок МО перпендикулярен АС и ОА = ОС. Расстояние от точки О до прямой МB равно а. Найти угол между плоскостями (AMB) и (CMB).

Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.

ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,

ВО⊥АС,

МО⊥АС по условию, значит

АС⊥(МОВ).

МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).

АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,

МА = МС.

ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда

АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.

ΔОКС: ∠КОС = 90°,

           tg∠OKC = OC / OK = a√3 / a = √3

Тогда ∠ОКС = 60°.

∠АКС = 2∠ОКС = 120°

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота