Постройте сечение треугольной пирамиды DABC плоскостью, проходящей через следующие точки
1) середины рёбер AD, CD и точку L, лежащую на ребре BC, если
BL : LC =1 : 2;
2) K, L и M, лежащие на рёбрах AD, AB и BC соответственно, если
AK : KD = BL : LA= BM : MC =1 : 2;
3) середины рёбер BC, CD и точку, лежащую на медиане DM грани ABD.
ответ:Номер 1
(180-25):2=155:2=77,5
<СВ=77,5 градусов
<АС=77,5+25=102,5 градусов
Номер 2
<МК-8Х
<КN=X
8X+X=180
9X=180
X=180:9
X=20
<MK=8•20=160 градусов
<KN=20 градусов
Номер 3
4+5=9 частей
Одна часть равна
180:9=20
<CDB=20•4=80 градусов
<АDC=20•5=100 градусов
Номер 4
<МРК=2,6 Х
<КРN=X
2,6X+X=180
3,6X=180
X=180:3,6
X=50
<MPK=2,6•50
<MPK=130 градусов
<КРN=50 градусов
Номер 6
<МКС=180-40+20=160 градусов
Номер 5
<РLR-100%
<PLS=80%
100%+80%0180
180%=180
1%=180:180
1%=1 градус
<РLR=1•100=100 градусов
<РLS=1•80=80 градусов
Объяснение:
4 см
Объяснение:
Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
Если остались вопросы - спрашивайте!