Постройте трапецию ABCD с основаниями BC и AD. Проведите отрезок CM, параллельный ее диагонали BD (точка M принадлежит лучу AD). Объясните, почему площадь треугольника ACM равна половине произведения суммы длин оснований этой трапеции тна её высоту.
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
- всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP.
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.