1) Проведём две высоты к плоскости ABCD из вершин и И отметим их как и соответственно.
2)Рассмотрим полученный треугольник ; По чертежу видно, что этот треугольник прямоугольный и один из его острых углов равен 60 градусов, что означает что второй его угол равен 30 градусам, следовательно если нам известна , то можно и найти
(Против угла в 30 градусов лежит катет равный половине гипотенузы).
3)Поскольку пирамида правильная, то высоты, которые были проведены в 1 пункте делят диагональ квадрата ABCD на 3 отрезка, причем
4) Используя правило прямоугольного треугольника, при двух его известных сторонах и углу, можно найти другую сторону этого треугольника:
5)Следует детально рассмотреть треугольник В нем известны две стороны, и он прямоугольный, а значит можно найти по теореме Пифагора. .
6)Отсюда можно найти .
. Знаю эту величину можем найти искомую АB.
Поскольку в основании правильной усеченной четырёхугольной пирамиды лежит квадрат. ; Но также стоит заметить, что , но второй намного легче, чем мучиться с преобразованием корневых выражений.
Дано:
Правильная усеченная пирамида
(ребро)
(диагональ)
Найти:
1) Проведём две высоты к плоскости ABCD из вершин и И отметим их как и соответственно.
2)Рассмотрим полученный треугольник ; По чертежу видно, что этот треугольник прямоугольный и один из его острых углов равен 60 градусов, что означает что второй его угол равен 30 градусам, следовательно если нам известна , то можно и найти
(Против угла в 30 градусов лежит катет равный половине гипотенузы).
3)Поскольку пирамида правильная, то высоты, которые были проведены в 1 пункте делят диагональ квадрата ABCD на 3 отрезка, причем
4) Используя правило прямоугольного треугольника, при двух его известных сторонах и углу, можно найти другую сторону этого треугольника:
5)Следует детально рассмотреть треугольник В нем известны две стороны, и он прямоугольный, а значит можно найти по теореме Пифагора. .
6)Отсюда можно найти .
. Знаю эту величину можем найти искомую АB.
Поскольку в основании правильной усеченной четырёхугольной пирамиды лежит квадрат. ; Но также стоит заметить, что , но второй намного легче, чем мучиться с преобразованием корневых выражений.
ответ: AB= двум корней из двух плюс 4
Первое немогу решить, так как давно это было,не могу вспомнить всех формул.
Решение задачи №2:
а) Найдем гипотенузу BD треугольника BCD:
BD=корень из (BC^2+CD^2)= корень из(5^2 + 5^2)= корень из 50
Назовем проекцию диагонали BD1, она является катетом прямоугольного треугольника BDD1. Найдем ее:
BD1=кореньиз(BD^2-DD1^2)=кореньиз((корень из 50)^2-1^2)=кореньиз49=7
ответ: проекция диагонали BD на плоскость равна 7 см.
б)я не знаю, но по моему они могут быть и не перпендикулярны.
если только не имеется в виду плоскость в которой лежит CDD1, тогда да, т.к. ВС перпендикулярен СDD1