Если принять, что BKD прямоугольный треугольник, то BK и KD, являются катетами прямоугольного треугольника, соответственно, гипотенуза данного треугольника должна быть равна квадратному корню из суммы квадратов катетов (Теорема Пифагора), т.е. 144+25=169, корень из 169 = 13, что равно BD.
Из этого исходит что треугольник ABK также является прямоугольным. Площадь прямоугольного треугольника равна половине произведения катетов, т.е. (12*4)/2=24
Также просто уже и рассчитать площадь параллелограмма.
Площадь равна произведению стороны умноженной на высоту. Сторона AD равна 9, раз уж вышеприведенные треугольники прямоугольные, то BK является высотой параллелограмма, соответственно площадь:9*12=10 (c)
Из прямоугольного треугольника ABD AD^2=AB^2+BD^2=9+16=25 AD=5 Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12 AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1 Пусть BE высота в треугольнике ABD Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах. Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE Чтобы найти высоту BE выразим площадь треугольника ABD двумя площадь ABD = AB*BD/2 = AD*BE/2, отсюда BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна 2*площадь основания+площадь боковой поверхности площадь боковой поверхности = периметр основания умножить на высоту периметр основания = AB+BC+CD+AD=3+5+3+5=16 тогда площадь боковой поверхности 16*2,4=38,4 площадь полной поверхности 2*12+38,4=24+38,4=62,4
Если принять, что BKD прямоугольный треугольник, то BK и KD, являются катетами прямоугольного треугольника, соответственно, гипотенуза данного треугольника должна быть равна квадратному корню из суммы квадратов катетов (Теорема Пифагора), т.е. 144+25=169, корень из 169 = 13, что равно BD.
Из этого исходит что треугольник ABK также является прямоугольным. Площадь прямоугольного треугольника равна половине произведения катетов, т.е. (12*4)/2=24
Также просто уже и рассчитать площадь параллелограмма.
Площадь равна произведению стороны умноженной на высоту. Сторона AD равна 9, раз уж вышеприведенные треугольники прямоугольные, то BK является высотой параллелограмма, соответственно площадь:9*12=10 (c)
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4