Так как расстояние от точки А до оси абсцисс (оно равно 3) меньше радиуса 5, то точек на оси абсцисс, расстояние от которых до точки А равно 5, будет 2. Они находятся как точки пересечения окружности радиусом 5 с центром в точке А. Уравнение такой окружности (х-1)²+(у-3)²=5². На оси Ох у = 0. Тогда (х-1)²+(0-3)²=5². х²-2х+1+9 = 25. Получили квадратное уравнение х²-2х-15 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5; x₂=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3. Имеем 2 центра: (-3; 0) и (5; 0)
ответ: имеем 2 уравнения окружности, проходящей через точку A(1; 3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5: (х+3)² + у² = 5², (х-5)²+ у² = 5².
Полупериметр АВ+ВС=42/2=21 пусть АВ=х тогда ВС=21-х ΔАВС - прямоугольный по теореме Пифагора: х²+(21-х)²=(√221)² х²+(441-42х+х²)=221 х²+441-42х+х²-221=0 2х²-42х-220=0 х²-21х-110=0 Д=(-21)²-4*1*(-110)=441-440=1 х1=(21+1)/2=22/2=11 х2=(21-1)/2=20/2=10 если АВ=10, то ВС=21-10=11 если АВ=11, то ВС=21-11=10 ⇒ в любом случае одна сторона 10, другая 11 пусть АВ=10, а ВС=11 проведем высоту ВН есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е. ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221 рассмотрим ΔАВС его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55 ΔАВС=ΔАСД ⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110
Уравнение такой окружности (х-1)²+(у-3)²=5². На оси Ох у = 0.
Тогда (х-1)²+(0-3)²=5². х²-2х+1+9 = 25.
Получили квадратное уравнение х²-2х-15 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5; x₂=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3.
Имеем 2 центра: (-3; 0) и (5; 0)
ответ: имеем 2 уравнения окружности, проходящей через точку A(1; 3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5:
(х+3)² + у² = 5²,
(х-5)²+ у² = 5².
пусть АВ=х
тогда ВС=21-х
ΔАВС - прямоугольный
по теореме Пифагора:
х²+(21-х)²=(√221)²
х²+(441-42х+х²)=221
х²+441-42х+х²-221=0
2х²-42х-220=0
х²-21х-110=0
Д=(-21)²-4*1*(-110)=441-440=1
х1=(21+1)/2=22/2=11
х2=(21-1)/2=20/2=10
если АВ=10, то ВС=21-10=11
если АВ=11, то ВС=21-11=10
⇒ в любом случае одна сторона 10, другая 11
пусть АВ=10, а ВС=11
проведем высоту ВН
есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е.
ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221
рассмотрим ΔАВС
его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55
ΔАВС=ΔАСД
⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110