Находим длину рёбер ДВ и ДС: 58.5 67.5 84 105 315 ДВ = √(9²+13²) = √(81+169) = √250 ≈ 15.81139 см. ДС = √(9²+15²) = √(81+225) = √306 ≈ 17.49286 см.
Площади основы и грани СДВ находим по формуле Герона: So = √(21(21-13)(21-14)(21-15)) = 84 cm², здесь р = (13+14+15)/2=21 см. S(BCD)= 105 cm². a b c p 14 17.492856 15.811388 23.652122.
Площадь трапеции равна 900√3 м²
Объяснение:
Дано:
ABCD - трапеция
АС - диагональ трапеции
AB = CD - боковые стороны
АС ⊥ CD
AD = 40√3 м - большее основание
∠A = ∠D = 60°
Найти:
S - площадь трапеции
Рассмотрим прямоугольный треугольник ACD, гипотенуза которого AD = 40√3 м и ∠D = 60°.
Катеты АС и CD этого треугольника равны
АC = AD · sin 60° = 40√3 · 0.5√3 = 60 (м)
CD = AD · cos 60° = 40√3 · 0.5 = 20√3 (м)
Поскольку трапеция равнобедренная, то
АВ = CD = 20√3 м.
Из вершины С прямого угла треугольника ACD опустим на гипотенузу AD высоту CK, которая одновременно является и высотой трапеции
В треугольнике ACD
∠CAD = 90° - ∠D = 90° - 60° = 30°
Основания трапеции ВС ║ АD
∠ACB = ∠CAD = 30° (внутренние накрест лежащие углы при ВС ║ АD и секущей АС).
Рассмотрим ΔАВС.
∠ВАС = ∠BАD - ∠CAD = 60° - 30° = 30°
Поскольку в ΔАВС углы ∠ВАС = ∠ACB = 30°, то ΔАВС - равнобедренный, то есть ВС = АВ = 20√3 м.
Площадь трапеции равна произведению полусуммы оснований на высоту.
АВ = 13 см, ВС = 14 см, АС = 15 см (так как в задании это не оговорено).
Находим площади граней:
S(ADB) = (1/2)*9*13 = 58,5 cm²,
S(ADC) = (1/2)*9*15 = 67,5 cm².
Находим длину рёбер ДВ и ДС: 58.5 67.5 84 105 315 ДВ = √(9²+13²) = √(81+169) = √250 ≈ 15.81139 см.
ДС = √(9²+15²) = √(81+225) = √306 ≈ 17.49286 см.
Площади основы и грани СДВ находим по формуле Герона:
So = √(21(21-13)(21-14)(21-15)) = 84 cm², здесь р = (13+14+15)/2=21 см.
S(BCD)= 105 cm².
a b c p
14 17.492856 15.811388 23.652122.
S = 58,5 + 67,5 + 84 + 105 =315 cм².