ГИА, если не ошибаюсь. 1) Сумма углов треугольника ВСЕГДА равна 180 градусов, это надо знать наизусть. Верно. 2) У прямоугольного треугольника есть только один прямой угол, иначе это будет противоречить условию из первого пункта, которое верно: прямой угол равен 90 градусов, сумма трех углов по 90 градусов равна 270, что явно больше 180. Неверно. 3) По общему правилу, сумма углов треугольника всегда равна 180 градусам, а один из углов треугольника не должен быть больше 180, что выводится из 1 же условия. 120+20+30 = 170, что меньше 180, следовательно не существует. Неверно. 4) Внешний угол треугольника это всегда сумма двух углов, противолежащих тому углу, который является внутренним по отношению к внешнему. Сложно, но верно.
1 РЕШЕНИЕ рисунок прилагается В четырехугольной пирамиде SABCD все ребра равны,значит все боковые грани равносторонние треугольники Так как точка M -- середина ребра SC, то ВМ - медиана, биссектриса, высота в треугольнике BSC и ВМ -перпендикуляр к SC DМ - медиана, биссектриса, высота в треугольнике DSC и DМ -перпендикуляр к SC ТРИ точки B,D,M образуют плоскость BMD, в которой лежат пересекающиеся прямые (BM) и (DM). Так как (SC) перпендикулярна к каждой из прямых (BM) и (DM), следовательно плоскость BMD перпендикулярна прямой SC. ДОКАЗАНО. 2 РЕШЕНИЕ рисунок прилагается Так как АВ ⊥ ВС , то основание пирамиды - прямоугольный треугольник ABC площадь прямоугольного треугольника S(∆ABC)=1/2 АВ*ВС = 1/2 *10*15=75 Так как через точку М ребра SB проведено сечение плоскостью, параллельной плоскости АВС, то по теореме Фалеса эта плоскость делит боковые ребра пирамиды на пропорциональные отрезки таким образом, что: ∆ASB ~ ∆KSM ∆ASC ~ ∆KSN ∆BSC ~ ∆MSN подобные треугольники. Искомое сечение ∆KMN Причем если SM:MB=2:3 , то коэффициент подобия k = SM/SB = 3/5 В подобных треугольниках соответствующие стороны пропорциональны KM ~ AB KN ~ AC MN ~ BC тогда ∆KMN ~ ∆ABC с коэффициентом подобия k = 3/5 . Известно, что площади подобных треугольников относятся, как k^2 тогда S(∆KMN) = k^2 * S(∆ABC) = (3/5)^2 * 75 = 27 ответ S = 27
1) Сумма углов треугольника ВСЕГДА равна 180 градусов, это надо знать наизусть. Верно.
2) У прямоугольного треугольника есть только один прямой угол, иначе это будет противоречить условию из первого пункта, которое верно: прямой угол равен 90 градусов, сумма трех углов по 90 градусов равна 270, что явно больше 180. Неверно.
3) По общему правилу, сумма углов треугольника всегда равна 180 градусам, а один из углов треугольника не должен быть больше 180, что выводится из 1 же условия. 120+20+30 = 170, что меньше 180, следовательно не существует. Неверно.
4) Внешний угол треугольника это всегда сумма двух углов, противолежащих тому углу, который является внутренним по отношению к внешнему. Сложно, но верно.
РЕШЕНИЕ
рисунок прилагается
В четырехугольной пирамиде SABCD все ребра равны,значит все боковые грани равносторонние треугольники
Так как точка M -- середина ребра SC, то
ВМ - медиана, биссектриса, высота в треугольнике BSC и
ВМ -перпендикуляр к SC
DМ - медиана, биссектриса, высота в треугольнике DSC и
DМ -перпендикуляр к SC
ТРИ точки B,D,M образуют плоскость BMD, в которой лежат пересекающиеся прямые (BM) и (DM).
Так как (SC) перпендикулярна к каждой из прямых (BM) и (DM),
следовательно плоскость BMD перпендикулярна прямой SC.
ДОКАЗАНО.
2
РЕШЕНИЕ
рисунок прилагается
Так как АВ ⊥ ВС , то основание пирамиды - прямоугольный треугольник ABC
площадь прямоугольного треугольника S(∆ABC)=1/2 АВ*ВС = 1/2 *10*15=75
Так как через точку М ребра SB проведено сечение плоскостью, параллельной плоскости АВС, то по теореме Фалеса эта плоскость делит боковые ребра пирамиды на пропорциональные отрезки таким образом, что:
∆ASB ~ ∆KSM
∆ASC ~ ∆KSN
∆BSC ~ ∆MSN
подобные треугольники.
Искомое сечение ∆KMN
Причем если SM:MB=2:3 , то коэффициент подобия k = SM/SB = 3/5
В подобных треугольниках соответствующие стороны пропорциональны
KM ~ AB
KN ~ AC
MN ~ BC
тогда ∆KMN ~ ∆ABC с коэффициентом подобия k = 3/5 .
Известно, что площади подобных треугольников относятся, как k^2 тогда
S(∆KMN) = k^2 * S(∆ABC) = (3/5)^2 * 75 = 27
ответ S = 27