2) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть на одну часть приходиться х град., тогда ∠А=3х град., ∠С=3х град., а ∠В=4х град. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
3х + 3х + 4х = 180
10х = 180
х = 180:10
х = 18, значит на одну часть приходится 18°
3) ∠А=∠С= 3•18=54°
∠В= 4•18=72°
ответ: ∠А=54°, ∠В=72°, ∠С=54°
3) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть ∠В=х град., тогда ∠А=30+х град., ∠С=30+х. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
х + 30 + х + 30 + х = 180
3х + 60 = 180
3х = 180 - 60
3х = 120
х = 120 : 3
х = 40, значит ∠В=40°
3) ∠А=∠С= 30+40 =70°
ответ: ∠А=70°, ∠В=40°, ∠С=70°
Объяснение:
по-моему я всё понятно написала, если что, то спрашивай в коментах
2) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть на одну часть приходиться х град., тогда ∠А=3х град., ∠С=3х град., а ∠В=4х град. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
3х + 3х + 4х = 180
10х = 180
х = 180:10
х = 18, значит на одну часть приходится 18°
3) ∠А=∠С= 3•18=54°
∠В= 4•18=72°
ответ: ∠А=54°, ∠В=72°, ∠С=54°
3) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть ∠В=х град., тогда ∠А=30+х град., ∠С=30+х. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
х + 30 + х + 30 + х = 180
3х + 60 = 180
3х = 180 - 60
3х = 120
х = 120 : 3
х = 40, значит ∠В=40°
3) ∠А=∠С= 30+40 =70°
ответ: ∠А=70°, ∠В=40°, ∠С=70°
Объяснение:
по-моему я всё понятно написала, если что, то спрашивай в коментах
h² =a₁*b₁,где a₁ и b₁ проекции катетов a и b на гипотенузе(отрезки разд. высотой) || Пусть a₁ =9 см ; b₁= (h+4) см || .
h² =9(h+4) ;
h² -9h -36 =0 ;
[h= -3 ( не решения ) ; h =12 (см) .
b₁ =h+4 = 12+4 =16 (см).
Гипотенуза c = a₁+b₁ = 9 см+ 16 см =25 см .
a =√(a₁²+ h²) = √(9²+ 12²) =15 (см) . || 3*3; 3*4 ; 3*5 ||
или из a² =c*a₁=25*9⇒ a=5*3 =15 (см) .
b = (b₁²+ h²) = √(16²+ 12²) = 20 (см) . || 4*3; 4*4 ; 4*5 ||
или из b² =c*b₁=25*16 ⇒ b=5*4 =20 (см) .
ответ: 15 см, 20 см, 25 см . || 5*3; 5*4 ; 5*5 |