Считаем, что по условию биссектриса ВD проведена из вершины В треугольника, иначе бы было сказано, что дана биссектриса угла при основании. Тогда: 1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В). 2. Проводим прямую ВD1, равную двум отрезкам ВD. 3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ. 4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.
Пусть O - точка пересечения диагоналей. Известно, что диагонали ромба перпендикулярны друг другу, а также делятся точкой пересечения пополам. По теореме Пифагора находим BO² = AB²-AO² = 100 - 25 = 75; BO = √75 = 5√3. BO = OD => BD = 2BO = 2*5√3 =10√3 Т.к. AO = 2AB, то угол ABP = 30°, тогда и угол ABC= 60°, т.к. диагонали делят углы, из вершин которых они выходят, на два равных. Мы знаем, что противоположные углы ромба равны, значит, угол ADC = 60°. Противоположные углы DAB и BCD равны. Находим угол DAB+BCD. DAB+BCD = 360°-60°-60°=240° => угол DAB = 120°, угол BCD = 120°.
Тогда:
1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В).
2. Проводим прямую ВD1, равную двум отрезкам ВD.
3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ.
4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.