Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Сделаем рисунок. Соединим точки А и Е. Рассмотрим треугольники АСД и АСЕ. ∠ АСД=∠ АСЕ, это угол - общий для обоих треугольников ∠САД равен ∠ СЕА, так как они опираются на равные дуги ( Треугольник АСВ равнобедренный по условию, и ∠САВ =∠СВА, который опирается на ту же дугу, что и СЕА. Итак, имеем два треугольника с двумя равными углами . Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. Следовательно, Δ АСД ~ Δ АСЕ. Из подобия треугольников: AC:DC = СЕ:AC АС:1,5=3:АС АС²=4,5 АС=√2,25·2=1,5√2
Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Сделаем рисунок. Соединим точки А и Е.
Рассмотрим треугольники АСД и АСЕ.
∠ АСД=∠ АСЕ, это угол - общий для обоих треугольников
∠САД равен ∠ СЕА, так как они опираются на равные дуги
( Треугольник АСВ равнобедренный по условию, и ∠САВ =∠СВА, который опирается на ту же дугу, что и СЕА.
Итак, имеем два треугольника с двумя равными углами .
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
Следовательно, Δ АСД ~ Δ АСЕ.
Из подобия треугольников:
AC:DC = СЕ:AC
АС:1,5=3:АС
АС²=4,5
АС=√2,25·2=1,5√2