Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
1) Обозначим одну сторону прямоугольника 5х, другую 7х. Периметр прямоугольника равен сумме всех сторон, что по условию 144 см. Составляем уравнение: 5х+7х+5х+7х=144. 24х=144. х=6, Значит, одна сторона 5х=30 см, друга 7х=42 см. Площадь S=30·42=1260 кв.см
2) Одна сторона прямоугольника х см, вторая 3х см. Площадь такого прямоугольника S=x·3x=3x², по условию 48 кв см. Составляем уравнение: 3х²=48, х²=16, х=4 Значит, одна сторона прямоугольника 3 см, вторая 9 см. Квадрат имеет сторону 9 см. Площадь такого квадрата равна 9·9=81 кв. см.
3) Пусть одна сторона прямоугольника х , вторая сторона у, тогда площадь такого прямоугольника S=x·y
У нового прямоугольника сторона 2х, вторая сторона 4у, площадь такого прямоугольника Q=2x·4y=8x·y=8·S
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Тогда
AB²=10+10-2•(√10)•(√10)•0,8⇒
АВ²=4
АВ=СД=2 м
Из другой формулы площади прямоугольника
S=a•b найдем вторую сторону:
S=АД•AB
12=АД•2
ВС=АД=12:2=6 м
Р=2(AB+BC)=16 м
прямоугольника равен сумме всех сторон, что по условию 144 см.
Составляем уравнение: 5х+7х+5х+7х=144. 24х=144. х=6,
Значит, одна сторона 5х=30 см, друга 7х=42 см.
Площадь S=30·42=1260 кв.см
2) Одна сторона прямоугольника х см, вторая 3х см.
Площадь такого прямоугольника S=x·3x=3x², по условию 48 кв см.
Составляем уравнение:
3х²=48, х²=16, х=4
Значит, одна сторона прямоугольника 3 см, вторая 9 см.
Квадрат имеет сторону 9 см. Площадь такого квадрата равна 9·9=81 кв. см.
3) Пусть одна сторона прямоугольника х , вторая сторона у, тогда площадь такого прямоугольника S=x·y
У нового прямоугольника сторона 2х, вторая сторона 4у, площадь такого прямоугольника Q=2x·4y=8x·y=8·S
Площадь нового прямоугольника в 8 раз больше.