В трапеции ABCD боковые стороны AB=CD=13 см, .основания BC=15см ,AD=21 . ОПУСТИМ на основание АD высоты BE И СF. тогда EF=BC=15см AD-EF 36 - 12 AE=FD= 2 = = 2 = 12 см применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см найдем площадь трапеции : S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²
У вас получается 2 треугольника А1 К В1 и А2 К В2 Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей) A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же. КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
AD-EF 36 - 12
AE=FD= 2 = = 2 = 12 см
применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE
BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см
найдем площадь трапеции :
S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²
Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей)
A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же.
КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
ответ:ответ:В1В2= КВ2-КВ1 = 18-8=10см