Практическая работа: Построить произвольный треугольник ABC. Провести
серединные перпендикуляры Типи kк сторонам AB, AC и BC
соответственно. Что можно сказать о взаимном расположении серединных
перпендикуляров?
Сравните OA ... ОВ... OC Для окружности это ... ?
да
Постройте описанную окружность.
Где лежит центр описанной окружности?
Боковые стороны равны по 5√2 см.
Тогда его площадь соответствует заданию:
S = (1/2)*10*5 = 25 см².
Углы при основании равны 45 градусов, при вершине - 90 градусов.
По заданию АР = (4/5)*5√2 = 4√2 см.
PB = (1/5)*5√2 = √2 см.
BQ = AP = 4√2 см,
QC = PB = √2 см.
RC = (4/5)*10 = 8 см,
AR = 10 - 8 = 2 см.
Теперь можно определить длины сторон искомого треугольника PQR.
PQ = √(√2)²+(4√2)²) = √(2+32) = √34 ≈ 5,83095189 см.
PR = √(2²+(4√2)²-2*2*4√2*cos45°) = √20 = 2√5 ≈ 4,472136 см.
RQ = √((√2)²+8²-2*√2*8*cos45°) = √50 ≈ 7,0710678 см.
Теперь по формуле Герона находим площадь треугольника PQR.
S = √(p(p-a)(p-b)(p-c)). где р - полупериметр, р = 8,6870778 см.
Подставив данные, получаем S = 13 см².
а) Площадь сектора 6π см² , дуга сектора 2π см
Формула площади сектора через длину дуги
S=L•R/2
6π=2πR/2⇒
R=6
б)
Длина дуги сектора равна длине дуги в 1°, умноженной на величину угла сектора.
L=(2πR:360°)•n , где n - угол сектора
2π=2πR:360•n ⇒
n=2π •360:12π=60°
в)
Рассмотрим чертеж приложения, в котором угол сектора АОВ=60°, С -точка касания окружностей, О1 - центр вписанной в сектор АОВ окружности. Он лежит на ОС, биссектрисе угла АОВ.
АО=ОВ=ОС=6
Проведем из О1 радиус в точку касания М вписанной окружности с ОВ.
Треугольник ОО1М прямоугольный, ∠О1ОМ=30°, ОО1 - гипотенуза, О1М - катет= r
ОО1=ОС - О1С=6-r
r противолежит углу 30°⇒
r=(6-r):2 ⇒
3r=6 см
r=2 см