1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)
Площадь произвольного четырёхугольника с диагоналями , и острым углом между ними (или их продолжениями), равна: площадь произвольного выпуклого четырёхугольника равна: , где , — длины диагоналей, a, b, c, d — длины сторон. : где p — полупериметр, а есть полусумма противоположных углов четырёхугольника. (какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна , то полусумма двух других углов будет и ). из этой формулы для вписанных 4-угольников следует формула брахмагупты. особые случаи[править | править исходный текст] если 4-угольник и вписан, и описан, то .если он описан, то площадь равна половине его периметра умноженная на радиус вписанной окружности | править исходный текст] в древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника неверную формулу — произведение полусумм его противоположных сторон a, b, c, d[1]: . для непрямоугольных четырехугольников эта формула даёт завышенное значение площади. можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. при неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счет усреднения исходных измерений.
60 градусов каждый угол треугольника АВД
Объяснение:
1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)