АВС - прямоугольный треугольник, угол В = 90 градусов, угол С = 60 градусов, АВ и ВС - катеты, АС - гипотенуза. угол А + угол В + угол С = 180 градусов (по теореме о сумме углов треугольника); угол А + 90 + 60 = 180; угол А = 180 - 150; угол А = 30 градусов. Против угла 30 градусов лежит катет, который равен половине гипотенузы, тогда: ВС = АС/2. Сумма гипотенузы и меньшего катета равна 42. Меньшим катетом в АВС является катет ВС, потому что на него опирается меньший угол А, поэтому: АС + ВС = 42 см. Получаем систему уравнений: ВС = АС/2; АС + ВС = 42. Подставим первое выражение во второе вместо ВС и найдем длину гипотенузы АС: АС + АС/2 = 42; (2АС + АС) / 2 = 42; 3АС / 2 = 42; 3АС = 84; АС = 84 / 3; АС = 28 см. ответ: АС = 28 см.
3. Сумма углов ΔАВЕ=180°. Значит ∠АЕВ=180-∠ВАЕ-∠АВЕ=180-40-75=65°
∠АЕВ=∠ADCтрапеции т.к. ВЕ║CD. ∠ADC=65° Сумма углов трапеции, прилежащих к боковой стороне равна 180°. Значит ∠АВС=180-40=140° и ∠BCD=180-65=115°
8. Сумма углов трапеции, прилежащих к боковой стороне равна 180°. Значит ∠АВС=180-50=130°
∠ABD=90° дано по условию (см. чертеж). ΔBCD равнобедренный, т.к. ВС=CD (по чертежу). ∠CBD равнобедренного ΔBCD равен 130-90=40°
Углы при основании равнобедренного треугольника равны, значит ∠CDB=∠CBD=40°. Сумма углов треугольника равна 180°, поэтому ∠BCD=180-40-40=100°
∠CDA трапеции равен 180-100=80°, т.к. сумма углов при боковой стороне трапеции равна 180°
Объяснение: