Правильний трикутник зі стороною 6 см повернули на кут 60 навколо його центра .знайти периметр шестикутника вершинами якого є вершини поданого і утвореного трикутників
Стороны квадрата АВСD касаются сферы. Линия пресечения сферы плоскостью квадрата - вписанная в него окружность с диаметром КМ, равным стороне этого квадрата. Р(АВСD)=40 см ⇒ АВ =10 см.Тогда радиус вписанной в квадрат окружности r=КО1=10:2=5 см. Расстояние от цента сферы до плоскости квадрата равно длине отрезка, проведенного перпендикулярно к точке пересечения его диагоналей ( к центру окружности сечения).
Радиус сечения и расстояние от его центра до центра сферы - катеты прямоугольного треугольника КОО1, а радиус сферы КО - его гипотенуза. По т.Пифагора КО=√(KO²+OO1²)=13 см. Формула площади сферы S=4πR². ⇒ S-4π•169=676•π см² или 2123,7 см²
В прямоугольнике ABCD диагонали АС и ВD равны 25см. Тогда стороны ВС и DC равны по Пифагору √(АС-АВ) = √(625-400) = 15см. После того, как согнули прямоугольник, опустим высоты BF и DE на линию сгиба - диагональ АС. По формуле для высоты из прямого угла треугольника на его гипотенузу имеем: BF=DE= AB*DC/AC =20*15/25 = 12см. Прямоугольнык треугольники АDE и BFC равны. По Пифагору находим АЕ=FC = √(15²-12²) = 9см. Тогда EF= АС-AE-FC =25-18=7cм. В прямоугольном тр-ке DEF по Пифагору найдем DF=√(12²+7²)=√193см. Из прямоугольного треугольника DBF по Пифагору найдем искомое расстояние BD = √(DF²+BF²) =√(193+144) = √337см ≈ 18,36см. P.S Арифметику хорошо бы еще раз проверить...
Стороны квадрата АВСD касаются сферы. Линия пресечения сферы плоскостью квадрата - вписанная в него окружность с диаметром КМ, равным стороне этого квадрата. Р(АВСD)=40 см ⇒ АВ =10 см.Тогда радиус вписанной в квадрат окружности r=КО1=10:2=5 см. Расстояние от цента сферы до плоскости квадрата равно длине отрезка, проведенного перпендикулярно к точке пересечения его диагоналей ( к центру окружности сечения).
Радиус сечения и расстояние от его центра до центра сферы - катеты прямоугольного треугольника КОО1, а радиус сферы КО - его гипотенуза. По т.Пифагора КО=√(KO²+OO1²)=13 см. Формула площади сферы S=4πR². ⇒ S-4π•169=676•π см² или 2123,7 см²
После того, как согнули прямоугольник, опустим высоты BF и DE на линию сгиба - диагональ АС. По формуле для высоты из прямого угла треугольника на его гипотенузу имеем: BF=DE= AB*DC/AC =20*15/25 = 12см. Прямоугольнык треугольники АDE и BFC равны.
По Пифагору находим АЕ=FC = √(15²-12²) = 9см.
Тогда EF= АС-AE-FC =25-18=7cм.
В прямоугольном тр-ке DEF по Пифагору найдем DF=√(12²+7²)=√193см.
Из прямоугольного треугольника DBF по Пифагору найдем искомое расстояние BD = √(DF²+BF²) =√(193+144) = √337см ≈ 18,36см.
P.S Арифметику хорошо бы еще раз проверить...