1) Объем призмы : V=S(ABCD)*H =6*8*(6cos60°) =6*8*6*(1/2) =144 (см ³). ° * 2) < A = 30° ; AC =5 ; <C =90° ;β =45° Объем пирамиды : V=1/3S(ABC)*H , H =SO , SO ┴ (ABC) [ S_ вершина пирамиды ] . Пусть < C =90° ; cos30 °= AC/AB *** α =<A =30° *** AB =AC/cos30 ° =5:√3/2 =10/√3 . BC =1/2*10/√3 = 5/√3 . (катет против угла 30°) ; S(ABC) =1/2*AC*BC =1/2*5* 5/√3 =25/(2√3) . Если все боковые ребра пирамиды наклонены к плоскости основания под одним углом (данном случае под 45° то высота пирамиды проходит через центр описанной около основания окружности здесь середину O гипотенузы AB) , AO =BO ; ΔAOS равнобедренный прямоугольный : <AOS=90° , <SOA = 45° . SO =AO . SO =AO =AB/2 =5/√3 ; V=1/3S(ABC)*H =1/3*25/(2√3)*5/√3 =125/18 (см³). V =125/18 см³.
3) S=π*R*L ; 65π =π*R*13 ; R=5 ;. H =√(13² -5²) =12; V=1/3*S*H ; V =πR²H/3 x³ = (π*5²*12)/3 =100π ; x =∛100π .
ABC -- нижнее основание, A1B1C1 -- верхнее основание, D -- проекция точки C1 на плоскость основания ABC, C1D -- высота призмы, C1CD=45° AA1C1C и BB1C1C -- ромбы с острым углом 30°, AA1B1B -- квадрат Из треугольника C1DC: sin C1CD = C1D/C1C sin(45°)=4*корень(2) / C1C С1С=4*корень(2)/sin(45°)=4*корень(2)/(корень(2)/2)=4*2=8 Так как все боковые грани -- ромбы (квадрат -- это тоже ромб), то длины всех рёбер призмы равны между собой, следовательно, они равны 8. Площадь боковой поверхности равна сумме площадей ромбов и квадрата. Sромба=AC*AA1*sin(30°)=8*8*1/2=32 Sквадрата=AB*AA1=8*8=64 Sбок=2*Sромба+Sквадрата=2*32+64=128
V=S(ABCD)*H =6*8*(6cos60°) =6*8*6*(1/2) =144 (см ³). ° *
2) < A = 30° ; AC =5 ; <C =90° ;β =45°
Объем пирамиды :
V=1/3S(ABC)*H , H =SO , SO ┴ (ABC) [ S_ вершина пирамиды ] .
Пусть < C =90° ;
cos30 °= AC/AB *** α =<A =30° ***
AB =AC/cos30 ° =5:√3/2 =10/√3 .
BC =1/2*10/√3 = 5/√3 . (катет против угла 30°) ;
S(ABC) =1/2*AC*BC =1/2*5* 5/√3 =25/(2√3) .
Если все боковые ребра пирамиды наклонены к плоскости основания под одним углом
(данном случае под 45° то высота пирамиды проходит через центр описанной около основания окружности здесь середину O гипотенузы AB) ,
AO =BO ;
ΔAOS равнобедренный прямоугольный : <AOS=90° , <SOA = 45° .
SO =AO .
SO =AO =AB/2 =5/√3 ;
V=1/3S(ABC)*H =1/3*25/(2√3)*5/√3 =125/18 (см³).
V =125/18 см³.
3) S=π*R*L ;
65π =π*R*13 ;
R=5 ;.
H =√(13² -5²) =12;
V=1/3*S*H ;
V =πR²H/3
x³ = (π*5²*12)/3 =100π ;
x =∛100π .
ABC -- нижнее основание, A1B1C1 -- верхнее основание, D -- проекция точки C1 на плоскость основания ABC, C1D -- высота призмы, C1CD=45°
AA1C1C и BB1C1C -- ромбы с острым углом 30°, AA1B1B -- квадрат
Из треугольника C1DC:
sin C1CD = C1D/C1C
sin(45°)=4*корень(2) / C1C
С1С=4*корень(2)/sin(45°)=4*корень(2)/(корень(2)/2)=4*2=8
Так как все боковые грани -- ромбы (квадрат -- это тоже ромб), то длины всех рёбер призмы равны между собой, следовательно, они равны 8.
Площадь боковой поверхности равна сумме площадей ромбов и квадрата.
Sромба=AC*AA1*sin(30°)=8*8*1/2=32
Sквадрата=AB*AA1=8*8=64
Sбок=2*Sромба+Sквадрата=2*32+64=128