Правильный треугольники ABC и A1B1C1 лежат в параллельных плоскостях a, b соответственно. Прямые AA1, BB1 и CC1 перпендикулярны плоскости a . AA1 = 3, AC = 2. Нарисуйте схему по условиям расчета и найдите угол между плоскостями ABC и A1BC.
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна ВС+АD=16·2=32 Большее основание равно AD=32-BC=32-6=26 Отрезок НD- меньший из двух, на которые высота делит основание АД. Полуразность оснований равна HD=(26-6):2=10 ответ: Отрезок HD=10
если соединить середины сторон параллелограмма, то отрезки будут праллельны его диагоналям и являтся средними линиями треугольников, на которые он делится диагоналями. Средняя линия делит треугольник на два подобных с коэффициентом подобия 1/2. Отношение площадей - коэффициент подобия в квадрате -1/4. Значит площадь треугольников 2* 6:4=3. Площадь основного параллелограмма равна сууме площади внутреннего параллелограмма и площадей треугольников, которые отсекают стороны внутреннего параллелограмма от основного. Значит площадь внутреннего паралаллеограмма равна 6-3=3
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух, на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10
если соединить середины сторон параллелограмма, то отрезки будут праллельны его диагоналям и являтся средними линиями треугольников, на которые он делится диагоналями. Средняя линия делит треугольник на два подобных с коэффициентом подобия 1/2. Отношение площадей - коэффициент подобия в квадрате -1/4. Значит площадь треугольников 2* 6:4=3. Площадь основного параллелограмма равна сууме площади внутреннего параллелограмма и площадей треугольников, которые отсекают стороны внутреннего параллелограмма от основного. Значит площадь внутреннего паралаллеограмма равна 6-3=3