При каких условиях можно утверждать, что выпуклый четырехугольник ABCD, диагонали которого пересекаются в точке O, является параллелограммом:
1)AB = CD, стороны BC и AD параллельны
2)AO = OC, AB и CD параллельны
3)AO = OC, AD = BC
4)AO = OC, угол ABC = углу ADC
Татьяна4437 11 месяцев назад 11 Сторона основания правильной четырехугольной пирамиды равна 30 см. Боковое ребро с плоскостью основания образует угол 30°. Вычислите высоту пирамиды. (ответ должен получиться с корнем) Знания Математика ответить Комментировать 1 ответ: andron46 [4] 11 месяцев назад 0 0 У правильной 4-угольной пирамиды в основании лежит квадрат. Найдём половину длины его диагонали: 1/2*√(30²+30²)=15*√2 Далее делаешь доп. построение: из вершины пирамиды проводишь перпендикуляр к основанию (длина этого перпендикуляра и есть искомая высота). Этот перпендикуляр попадёт в точку пересечения диагоналей квадрата, лежащего в основании. Рассматриваешь получившийся прямоугольный треугольник, (состоящий из бокового ребра, половины диагонали и построенного перпендикуляра): косинус 30°=√3/2 ⇒ боковая сторона равна 10*√6. Далее по теореме Пифагора: √((10*√6)²-(15*√2)²)=√(600-450)=√150=5*√6 ответ: 5*√6
Подробнее – на Otvet.Ws – https://otvet.ws/questions/5978459-storona-osnovaniya-pravilnoi-chetyrehugolnoi-piramidy-ravna-30.html
1) Если провести к АВ высоту ОМ из О, то ОМ будет для равнобедренного треугольника АОВ и медианой и биссектрисой..
Высота из О₁ в равнобедренном треугольнике АО₁В, проведенная к тому же отрезку АВ, тоже - медиана и биссектриса. Так как М - середина одного и того же отрезка и углы при ней прямые, то М лежит на ОО₁
Отсюда
Угол АОМ=углу ВОМ,
угол АО₁М=углу ВО₁М.
ОО₁- общая сторона этих треугольников.
По второму признаку равенства треугольников треугольники равны, если у них равны два угла и сторона между ними. ⇒ Δ АО₁В=Δ АОВ ч.т.д.