Площадь прямоугольника-s= a*b докажем, что s = ab.
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ----------- Центр окружности лежит на АВ, следовательно, АD- диаметр. Проведем радиус ОС . Т.к. С - точка касания, ОС ⊥ АС. Треугольник АОС - прямоугольный. ОС=ОВ=ОD=r, АD:DB=1:2 ⇒ AD=DO=OB=r В прямоугольном треугольнике АСD гипотенуза AO=2 r=2 OC ⇒ sin∠OАС= OС:АО=1/2 ⇒ Угол ОАС=30º,⇒ угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ Больший угол АСВ треугольника АВС равен ∠АСВ=∠АСО+∠ВСО=90º+30º=120º
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.
-----------
Центр окружности лежит на АВ, следовательно, АD- диаметр.
Проведем радиус ОС .
Т.к. С - точка касания, ОС ⊥ АС.
Треугольник АОС - прямоугольный.
ОС=ОВ=ОD=r, АD:DB=1:2 ⇒
AD=DO=OB=r
В прямоугольном треугольнике АСD гипотенуза
AO=2 r=2 OC ⇒
sin∠OАС= OС:АО=1/2 ⇒
Угол ОАС=30º,⇒
угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º
Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒
Больший угол АСВ треугольника АВС равен
∠АСВ=∠АСО+∠ВСО=90º+30º=120º