при каких значениях x и y точки А (х; -2) и В (8; у) симметричны относительно начала координата? 1. х = 8, у = -2 2. х=-8, у=-2 3. х=-8, у=2 4. х=8, у = 2
Эту формулу можно доказать, разбив многоугольник на тр-ки со стороной - ст. мн-ка и 3ей вершиной в центре окр. Сторона мн-ка явл-ся касат. к окр., зн, высота тр-ка к этой стороне проходит через т. кас. с окр. Высота равна радиусу и полщадь тр-ка равна половине произв. стороны (кот. явл-ся ст. мн-ка) на высоту-радиус.
Сумма площадей тр-ков равна произв. полусуммы длин сторон на радиус.
То есть произв. полупериметра на радиус впис. окр.
Эту формулу можно доказать, разбив многоугольник на тр-ки со стороной - ст. мн-ка и 3ей вершиной в центре окр. Сторона мн-ка явл-ся касат. к окр., зн, высота тр-ка к этой стороне проходит через т. кас. с окр. Высота равна радиусу и полщадь тр-ка равна половине произв. стороны (кот. явл-ся ст. мн-ка) на высоту-радиус.
Сумма площадей тр-ков равна произв. полусуммы длин сторон на радиус.
То есть произв. полупериметра на радиус впис. окр.
S = p*r = 25,5 * 4 = 102
(p - полупериметр)
Эту формулу можно доказать, разбив многоугольник на тр-ки со стороной - ст. мн-ка и 3ей вершиной в центре окр. Сторона мн-ка явл-ся касат. к окр., зн, высота тр-ка к этой стороне проходит через т. кас. с окр. Высота равна радиусу и полщадь тр-ка равна половине произв. стороны (кот. явл-ся ст. мн-ка) на высоту-радиус.
Сумма площадей тр-ков равна произв. полусуммы длин сторон на радиус.
То есть произв. полупериметра на радиус впис. окр.
S = p*r = 25,5 * 4 = 102
(p - полупериметр)
Эту формулу можно доказать, разбив многоугольник на тр-ки со стороной - ст. мн-ка и 3ей вершиной в центре окр. Сторона мн-ка явл-ся касат. к окр., зн, высота тр-ка к этой стороне проходит через т. кас. с окр. Высота равна радиусу и полщадь тр-ка равна половине произв. стороны (кот. явл-ся ст. мн-ка) на высоту-радиус.
Сумма площадей тр-ков равна произв. полусуммы длин сторон на радиус.
То есть произв. полупериметра на радиус впис. окр.