В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ROSTMIX
ROSTMIX
29.06.2020 19:16 •  Геометрия

При каком значении m векторы а(2;3;-4)и b(m;-6;8) коллинеарны? ​

Показать ответ
Ответ:
milubel
milubel
08.01.2024 14:04
Для того чтобы векторы а(2;3;-4) и b(m;-6;8) были коллинеарными, они должны быть параллельными и иметь одинаковое направление.

Два вектора считаются коллинеарными, если они сонаправлены или противонаправлены друг другу. Это значит, что один вектор должен быть кратен другому.

Для нахождения значения m, при котором векторы а и b коллинеарны, необходимо установить равенство между соответствующими координатами векторов и решить получившуюся систему уравнений.

По условию имеем:
а(2;3;-4) и b(m;-6;8)

Устанавливаем равенства между соответствующими координатами векторов:
2 = m
3 = -6
-4 = 8

Первое уравнение говорит нам, что вторая координата вектора а должна быть равна второй координате вектора b.
Второе уравнение говорит нам, что третья координата вектора а должна быть равна третьей координате вектора b.

Из второго уравнения видно, что -6 = 3. Это невозможно, следовательно, векторы а и b не могут быть коллинеарными независимо от значения m.

В итоге, не существует такого значения m, при котором векторы а(2;3;-4) и b(m;-6;8) были бы коллинеарными.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота