Точка, равноудаленная от всех вершин квадрата - это вершина правильной пирамиды с основанием -квадратом со стороной, равной 8см и высотой, равной 4см. Надо найти расстояние от точки, равноудаленной от вершин основания (вершины пирамиды) до вершин основания, то есть РЕБРО данной пирамиды. Ребро найдем по Пифагору из прямоугольного треугольника, образованного половиной диагонали квадрата=4√2см, высотой пирамиды=4см (катеты) и ребром пирамиды (гипотенуза). Х=√(32+16)=√48=4√3см. ответ: искомое расстояние равно 4√3 см.
Пусть будет ромб АВСD, проведём диагонали, они пересекутся в точке Н. Диагонали ромба, как известно, перпендикулярны, к тому же точкой пересечения делятся пополам, значит, ВН=HD, АН=НС=АС\2=2. Тогда ВН= Кстати, все четыре получившихся треугольника равны по трём сторонам. Синус угла АВН = , тогда сам угол равен 41 градус 49 минут. Второй острый угол этого треугольника равен 48 градусов 11 минут. Тогда угол B = угол D = 2*(41 градус 49 минут)=83 градуса 38 минут. Угол А = угол С = 2*(48 градусов 11 минут)=96 градусов 22 минуты. ответ: 83 градуса 38 минут и 96 градусов 22 минуты.
ответ: искомое расстояние равно 4√3 см.
Кстати, все четыре получившихся треугольника равны по трём сторонам. Синус угла АВН = , тогда сам угол равен 41 градус 49 минут. Второй острый угол этого треугольника равен 48 градусов 11 минут. Тогда угол B = угол D = 2*(41 градус 49 минут)=83 градуса 38 минут.
Угол А = угол С = 2*(48 градусов 11 минут)=96 градусов 22 минуты.
ответ: 83 градуса 38 минут и 96 градусов 22 минуты.