Мы можем найти сторону которая лежит против угла 30°. Наверное, СВ - гипотенуза, поэтому сторона против угла в 30 ° будет равна половине гипотенузы, т.е 3 сантиметра. Записывается так. угол В =30° следовательно АС = 1/2 СВ АС=3см. Мы можем найти другой катет. По теореме Пифагора Он находится так б = √с в квадрате минус а в квадрате. = √36-9=√25=5см. Находим периметр. 5см + 3 см + 6 см = 14см. Находим площадь. Площадь прямоугольного треугольника равна половине его катетов. 1/2аб=1/2 5*3/2=7.5см в квадрате ответ: Площадь 7.5см в квадрате, периметр 12см
Т.к. одна из сторон равна 5 см, противоположная ей также равна 5 см. Вместе они составляют 10 см.
Две остальные стороны в сумме дают 28 - 10 = 18 см. Отдельно каждая = 18:2 = 9 см.
Угол 1 и угол 3 равны, т.к. они накрест лежащие.
Угол 1 и угол 2 равны, т.к. их образует биссектриса.
Благодаря тому, что угол 2 и угол 3 равны, образуется равнобедренный треугольник, в котором нам уже известна одна из сторон, которая равна 5 см. Т.к. треугольник равнобедренный, другая сторона, которая не биссектриса, также равна 5 см. Она же является частью ответа.
Чтобы найти второй отрезок, который образовала биссектриса, надо из длины основания вычесть длину уже известного отрезка: 9-5=4см.
ответ: биссектриса делит основание на отрезки 5 см. и 4 см.
АС=3см.
Мы можем найти другой катет. По теореме Пифагора
Он находится так б = √с в квадрате минус а в квадрате. = √36-9=√25=5см.
Находим периметр.
5см + 3 см + 6 см = 14см.
Находим площадь.
Площадь прямоугольного треугольника равна половине его катетов.
1/2аб=1/2 5*3/2=7.5см в квадрате
ответ: Площадь 7.5см в квадрате, периметр 12см
Найдём величину каждой из сторон параллелограмма.
Т.к. одна из сторон равна 5 см, противоположная ей также равна 5 см. Вместе они составляют 10 см.
Две остальные стороны в сумме дают 28 - 10 = 18 см. Отдельно каждая = 18:2 = 9 см.
Угол 1 и угол 3 равны, т.к. они накрест лежащие.
Угол 1 и угол 2 равны, т.к. их образует биссектриса.
Благодаря тому, что угол 2 и угол 3 равны, образуется равнобедренный треугольник, в котором нам уже известна одна из сторон, которая равна 5 см. Т.к. треугольник равнобедренный, другая сторона, которая не биссектриса, также равна 5 см. Она же является частью ответа.
Чтобы найти второй отрезок, который образовала биссектриса, надо из длины основания вычесть длину уже известного отрезка: 9-5=4см.
ответ: биссектриса делит основание на отрезки 5 см. и 4 см.
отрезок: https://ru-static.z-dn.net/files/dac/eb9ac605c9ff7c6529f4cd258e6f7551.jpg