Это же элементарно, нам дам прямоугольник, его диагональ, которая равна 25 см, и одна его сторона, которая равна 7, диагональ делит прямоугольник на 2 прямоугольных треугольника, которые ещё и равны между собой, рассмотрим 1 из них: его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24 То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
Если высота проведена из вершины с прямым углом к гипотенузе, то треугольник делится на два меньших треугольника, подобных исходному и подобных друг другу. Из этого много чего следует, в том числе соотношения: h=a*b/c и h²=d*e, где h - высота, a,b и c - катеты и гипотенуза, d и e - отрезки гипотенузы, на которые она делится высотой. Учитывая это, находим катеты по Пифагору: с²=2500 = 16х²+9х², откуда х=10. Итак, катеты равны 40 и 30. Тогда h = 40*30/50 = 24. h² = х*(50-х), откуда х²-50х+576 =0, а х = 25±7 Х1 = 32 Х2 = 18. Это и есть ответ.
его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24
То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
Учитывая это, находим катеты по Пифагору: с²=2500 = 16х²+9х², откуда х=10.
Итак, катеты равны 40 и 30. Тогда h = 40*30/50 = 24.
h² = х*(50-х), откуда х²-50х+576 =0, а х = 25±7
Х1 = 32
Х2 = 18.
Это и есть ответ.