∆ ABC~∆ AFE - оба прямоугольные с общим острым углом А.
Судя по отношения катета и гипотенузы в ∆ АFE, этот треугольник- египетский, значит, и ∆ АВС - египетский с отношением сторон 3:4:5 и коэффициентом подобия k=12:3=4, откуда АВ=5•4=20 см.
Полное решение:
∆ AEF~∆ ABC. Из подобия треугольников следует отношение ВС:EF=AB:AE
1.угол N равен углу A,BC=12 CM=6 CN=4 найти AC
2.ВС ⊥ АС - значит, ∆ АВС прямоугольный.
∆ ABC~∆ AFE - оба прямоугольные с общим острым углом А.
Судя по отношения катета и гипотенузы в ∆ АFE, этот треугольник- египетский, значит, и ∆ АВС - египетский с отношением сторон 3:4:5 и коэффициентом подобия k=12:3=4, откуда АВ=5•4=20 см.
Полное решение:
∆ AEF~∆ ABC. Из подобия треугольников следует отношение ВС:EF=AB:AE
12:6=AB:10
6АВ=120 АВ=20 см
3.Дано :
СD = 4 , BC=9 ;
∠3 = ∠1 + ∠2 .
∠CDA =∠CAD +∠ DAB * * * ∠3 = ∠1 + ∠2 * * *
но
∠CDA = ∠B + ∠ DAB (как внешний угол ΔDAB )
следовательно ∠B = ∠CAD .
---
По первому признаку подобия ΔACD ~ ΔBCA
( ∠ C - общее и ∠CAD =∠B )
AC /BC =CD /AC ⇔ AC² =BC*CD ⇒ AC = √(BC*CD)
AC =√(BC*CD) = √(9*4) =3*2 =6.
ответ : AC = 6.
Объяснение:
ОбъяснениА1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.е: