Центр вписанной в угол окружности лежит на его биссектрисе. Окружность радиуса 8 - вневписанная, касается сторон двух углов - А и С, ее центр лежит на пересечении биссектрис этих углов, смежных с углами А и С ∆ АВС соответственно,⇒ СО - биссектриса и делит угол НСК пополам. . Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы. СО₁ делит угол ВСН пополам. АСК - развернутый угол и равен 180º Сумма половин углов АСН и ОСН равна половине развернутого угла. Угол ОСО₁=180°:2=90°⇒ ∆ ОСО₁ - прямоугольный с прямым углом С. АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка: СН=АН=6. СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
Вариант 1, при АВ>BC. а) В ∆ АВС отрезок EF - средняя линия, так как соединяет середины сторон АВ и АС. ЕF параллельна ВС. Отрезок MD - секущая. Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC. По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC. ∠MNC=∠FND (вертикальные). Отсюда ∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
б) В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине: То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2. FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2. Но FN = FD (доказано выше) и ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE. Треугольник BED равнобедренный. (ВЕ=ED). Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3. Треугольник ВЕD - половина ромба ВЕDK и его площадь равна Sbed=25√3.
Для второго варианта, при АВ<ВС: а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND. FN=FD. Что и требовалось доказать.
б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2. FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2. Но FN = FD (доказано выше) и ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE. То есть треугольник BED равнобедренный. (ВЕ=ED). Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3. Треугольник ВЕD - половина ромба ВЕDK и его площадь равна Sbed=25√3.
СО - биссектриса и делит угол НСК пополам. .
Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы.
СО₁ делит угол ВСН пополам.
АСК - развернутый угол и равен 180º
Сумма половин углов АСН и ОСН равна половине развернутого угла.
Угол ОСО₁=180°:2=90°⇒
∆ ОСО₁ - прямоугольный с прямым углом С.
АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка:
СН=АН=6.
СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
СН²=ОН•HO₁
36=8 HO₁
HO₁=36/8=4,5 (ед. длины)
а) В ∆ АВС отрезок EF - средняя линия, так как соединяет середины
сторон АВ и АС.
ЕF параллельна ВС. Отрезок MD - секущая.
Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC.
По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC.
∠MNC=∠FND (вертикальные). Отсюда
∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
б) В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине:
То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2.
Но FN = FD (доказано выше) и
ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE.
Треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.
Для второго варианта, при АВ<ВС:
а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC
равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND.
FN=FD. Что и требовалось доказать.
б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2.
Но FN = FD (доказано выше) и
ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE.
То есть треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.