1) АД и ВД гипотезы равных прямоугольных треугольников т.к. в основании правильный ∆ (АС=ВС по условию;СД--общая; СД и ∆АВС перпендикулярны по условию =>
АД=ВД=√(СД^2+АС^2)
АД =ВД = √((16√3)^2+16^2)=32
2). АК и ВК ∆АОК и ∆ВОК
т.к. ∆АВС равносторонний медиана является биссектрисой и высотой
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Объяснение:
1) АД и ВД гипотезы равных прямоугольных треугольников т.к. в основании правильный ∆ (АС=ВС по условию;СД--общая; СД и ∆АВС перпендикулярны по условию =>
АД=ВД=√(СД^2+АС^2)
АД =ВД = √((16√3)^2+16^2)=32
2). АК и ВК ∆АОК и ∆ВОК
т.к. ∆АВС равносторонний медиана является биссектрисой и высотой
=> ОА=ОВ = 2/3 от длины медианы
ОК общая => ∆АОК =∆ВОК => АК=ВК
∆АВО равнобедренный основание АВ=16√3. <АОВ=120°; ОА=ОВ
АВ^2= 2ОА^2 - 2*АО^2*Cos120°
АВ^2 = 2АО^2(1-Cos120°)
АО^2 = АВ^2/(2*(1-Cos120°)
АО^2 = (16√3)^2/ (2*(1-Cos120°))
АК=ВК = √( ОК^2 + АО^2)
ОК ^2= 12^2= 144
Представляем и считаем, арифметику самостоятельно.
Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы
Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов)
А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным.
Утверждение доказано.