АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Диагонали прямоугольника в точке пересечения делятся пополам. Диагонали прямоугольника равны между собой. При пересечении диагоналей образуются равнобедренные треугольники. Рассмотрим один из них, вершина которого составляет 120 градусов. Находим углы при основании этого треугольника: (180 -120) :2 = 30градусов угол 30 гр лежит против меньшей стороны прямоугольника, принимаем меньшую сторону пр-ка за Х. Теперь рассмотрим треугольник, образованный одной диагональю. Он -прямоугольный, в котором меньший катет лежит против угла в 30 гр.и равен Х, следовательно гипотенуза(диагональ) = 2Х 2Х+Х = 36 (по условию) 3Х = 36 Х = 12 2Х = 24 ответ: 24 см - диагональ прямоугольника.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Диагонали прямоугольника равны между собой.
При пересечении диагоналей образуются равнобедренные треугольники.
Рассмотрим один из них, вершина которого составляет 120 градусов.
Находим углы при основании этого треугольника: (180 -120) :2 = 30градусов
угол 30 гр лежит против меньшей стороны прямоугольника, принимаем меньшую сторону пр-ка за Х.
Теперь рассмотрим треугольник, образованный одной диагональю.
Он -прямоугольный, в котором меньший катет лежит против угла в 30 гр.и равен Х, следовательно гипотенуза(диагональ) = 2Х
2Х+Х = 36 (по условию)
3Х = 36
Х = 12
2Х = 24
ответ: 24 см - диагональ прямоугольника.