1) Угол при основании на 13° больше угла при вершине равнобедренного треугольника Сумма углов треугольника X + X + 13° + X + 13° = 180° 3X + 26° = 180° 3X = 154° X = 154°/3 = ° X + 13° = ° + 13° = °
ответ: угол при вершине равен °; углы при основании равны по °
2) Угол при вершине на 13° больше угла при основании равнобедренного треугольника X + X + X + 13° = 180° 3X = 180° - 13° 3X = 167° X = 167°/3 = ° X + 13° = °
ответ: углы при основании равны по ° угол при вершине равен °
см рис. во вложении. Обозначим середину ВС точкой К. Известно, что угол, опирающийся на диаметр является прямым. Для данного треугольника угол ВКМ - прямой. Медиана совпадает с высотой в равнобедренном треугольнике, значит МС=МВ и диаметр описанной окружности в два раза больше диаметра заданной, потому что точка М является центром описанной окружности треугольника. МК - срединный перпендикуляр и МТ тоже срединный перпендикуляр. Это видно из второго рисунка, там показаны конгруэнтные треугольники. В пересечении срединных перпендикуляров находится центр описанной окружности. А можно и еще проще рассуждать: ВМ = МС = 3, АМ = МС = 3. Расстояние от точки М до вершин треугольника АВС равное, значит М - центр описанной окружности.
1) Угол при основании на 13° больше угла при вершине равнобедренного треугольника
Сумма углов треугольника
X + X + 13° + X + 13° = 180°
3X + 26° = 180°
3X = 154°
X = 154°/3 = °
X + 13° = ° + 13° = °
ответ: угол при вершине равен °;
углы при основании равны по °
2) Угол при вершине на 13° больше угла при основании равнобедренного треугольника
X + X + X + 13° = 180°
3X = 180° - 13°
3X = 167°
X = 167°/3 = °
X + 13° = °
ответ: углы при основании равны по °
угол при вершине равен °
см рис. во вложении. Обозначим середину ВС точкой К. Известно, что угол, опирающийся на диаметр является прямым. Для данного треугольника угол ВКМ - прямой. Медиана совпадает с высотой в равнобедренном треугольнике, значит МС=МВ и диаметр описанной окружности в два раза больше диаметра заданной, потому что точка М является центром описанной окружности треугольника. МК - срединный перпендикуляр и МТ тоже срединный перпендикуляр. Это видно из второго рисунка, там показаны конгруэнтные треугольники. В пересечении срединных перпендикуляров находится центр описанной окружности. А можно и еще проще рассуждать: ВМ = МС = 3, АМ = МС = 3. Расстояние от точки М до вершин треугольника АВС равное, значит М - центр описанной окружности.
ответ диаметр равен 6.