Боковые грани призмы - параллелограммы, и площадь каждого равна произведению высоты на основание.
Примем за основания граней (параллелограммов) боковые ребра. Они равны, а высоты - стороны треугольника в перпендикулярного сечения призмы, они разной длины.
Треугольник сечения подобен треугольнику со сторонами 9, 10, 17, площадь которого, найденная по ф.Герона, равна 36 (см²) (Можно без труда проверить)
Площади подобных фигур относятся, как квадрат коэффициента подобия их линейных элементов.
Если площадь сечения обозначить S, а площадь треугольника со сторонами 9,10,17 – S1, то S:S1=k²
S:S1=144:36=4
k²=3, ⇒k=√4=2
Следовательно, периметр сечения равен 2•(9+10+17)=72 см
Площадь боковой поверхности призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
Вспомним свойство основания высоты пирамиды: Основание высоты пирамиды совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий: 1) Все апофемы равны 2) Все боковые грани одинаково наклонены к основанию 3) Все апофемы одинаково наклонены к высоте пирамиды 4) Высота пирамиды одинаково наклонена ко всем боковым граням. И наоборот - если снование высоты пирамиды совпадает с центром вписанной в основание пирамиды окружности, то справедливы приведенные выше условия. В данной задаче основание высоты пирамиды совпадает с центром вписанной окружности. Следовательно, все апофемы равны. Подробное решение в приложении. ---------- [email protected]
Боковые грани призмы - параллелограммы, и площадь каждого равна произведению высоты на основание.
Примем за основания граней (параллелограммов) боковые ребра. Они равны, а высоты - стороны треугольника в перпендикулярного сечения призмы, они разной длины.
Треугольник сечения подобен треугольнику со сторонами 9, 10, 17, площадь которого, найденная по ф.Герона, равна 36 (см²) (Можно без труда проверить)
Площади подобных фигур относятся, как квадрат коэффициента подобия их линейных элементов.
Если площадь сечения обозначить S, а площадь треугольника со сторонами 9,10,17 – S1, то S:S1=k²
S:S1=144:36=4
k²=3, ⇒k=√4=2
Следовательно, периметр сечения равен 2•(9+10+17)=72 см
Площадь боковой поверхности призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
S=72•8=576 см²
Основание высоты пирамиды совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий:
1) Все апофемы равны
2) Все боковые грани одинаково наклонены к основанию
3) Все апофемы одинаково наклонены к высоте пирамиды
4) Высота пирамиды одинаково наклонена ко всем боковым граням.
И наоборот - если снование высоты пирамиды совпадает с центром вписанной в основание пирамиды окружности, то справедливы приведенные выше условия.
В данной задаче основание высоты пирамиды совпадает с центром вписанной окружности. Следовательно, все апофемы равны.
Подробное решение в приложении.
----------
[email protected]