Центр вписанной окружности треугольника = точка пересечения его биссектрис. В правильном треугольнике биссектрисы, высоты и медианы совпадают. По свойству медианы треугольника, точкой пересечения они делятся в соотношении 2:1 Поэтому радиус вписанной окружности правильного треугольника равен 1/3 длины высоты. r = h/3 Отсюда h = 3r = 3×2√3 = 6√3 Высота правильного треугольника образует с его сторонами прямоугольный треугольник. Угол, противолежаший высоте, равен 60°, сторона правильного треугольника является гипотенузой Отсюда длина стороны треугольника: a = h / sin 60° = 6√3 / (√3/2) = 12
Поэтому радиус вписанной окружности правильного треугольника равен 1/3 длины высоты. r = h/3
Отсюда h = 3r = 3×2√3 = 6√3
Высота правильного треугольника образует с его сторонами прямоугольный треугольник. Угол, противолежаший высоте, равен 60°, сторона правильного треугольника является гипотенузой
Отсюда длина стороны треугольника:
a = h / sin 60° = 6√3 / (√3/2) = 12
Во-первых, так как треугольник ABC – равносторонний,
то ∠ABD = 60°.
Во-вторых, так как треугольник BDE – равносторонний,
то ∠DBE = 60°.
Тогда в треугольниках ABD и CBE:
AB = BC, BD = BE, ∠ABD = ∠DBE = 60°.
По первому признаку равенства треугольников
ΔABD = ΔCBE.
Следовательно, AD = CE.
Объяснение: в равностороннем треугольнике все углы и стороны равны.
все проверено в онлайн мектепе и все правильно! 10/10
Также если вы дошли до 8 задания то ответ будет:
Рабс=24см. АС=8см. АД=85см.
И 9 задание:
21 см.
Все правильно :)