В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
KekalolQ
KekalolQ
23.07.2020 22:10 •  Геометрия

Придумать два вопроса по теме "теорема фалеса". 8 класс​

Показать ответ
Ответ:
LOLgreen
LOLgreen
17.03.2022 01:11

Соответствующие диагонали разбивают подобные многоугольники на подобные треугольники.

Доказываем подобие треугольников (с одинаковым коэффициентом и соответствием сторон) - тем самым доказываем подобие многоугольников.  

(3) A1B1C1~ABC, A1D1C1~ADC (по двум сторонам и углу между ними)  

(4) A1B1C1~ABC (по данным смежным сторонам и углу между ними)

A1D1C1~ADC (по стороне (A1C1, AC) и прилежащим углам)

(6) A1B1C1~ABC, A1B1D1~ABD (по трем пропорциональным сторонам)

∠C1A1D1=∠CAD

C1A1D1~CAD (по двум сторонам и углу между ними)


в каких случаях можно утверждать, что два четырёхугольника подобны?
0,0(0 оценок)
Ответ:
Mousediana
Mousediana
17.03.2022 01:11

Объяснение:

Два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями."

частные случаи:

1)Все квадраты подобны.

2)Если угол одного ромба равен углу другого ромба, то такие ромбы подобны.

3)Если две соседние стороны одного прямоугольника пропорциональны двум сторонам другого прямоугольника, то такие прямоугольники подобны.

4)Если две соседние стороны одного параллелограмма пропорциональны двум соседним сторонам другого параллелограмма, и углы, образованные этими сторонами, равны, то эти параллелограммы подобны.

5)Если соответственные стороны двух трапеций пропорциональны, то трапеции подобны.

6)Если угол одной трапеции равен углу другой трапеции, а стороны, образующие этот угол, и диагональ, выходящая из этого угла, соответственно пропорциональны двум сторонам другой трапеции, образующим угол, равный первому, и диагонали, выходящей из этого угла, то такие трапеции подобны.

Признак подобия произвольных выпуклых многоугольников

1)Если стороны и диагонали одного выпуклого n – угольника соответственно пропорциональны сторонам и диагоналям другого выпуклого n – угольника, то такие n – угольники подобны.

Признак подобия любых фигур:

1)Понятие подобия можно ввести не только для треугольников, но и для произвольных фигур. Фигуры F и F1 называются подобными, если каждой точке фигуры F можно сопоставить точку фигуры F1 так, что для любых двух точек М и N фигуры F и сопоставленных им точек М1 и N1 фигуры F1 выполняется условие М1N1/MN = k, где k — одно и то же положительное число для всех точек. При этом предполагается, что каждая точка фигуры F1 оказывается сопоставленной какой-то точке фигуры F. Число k называется коэффициентом подобия фигур F и F1.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота