Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см
8см
Объяснение:
1й решения.
Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см
ответ: х=6, у=6
Объяснение: Треугольники ОАА ₁ОВВ₁₁ , ОСС₁₁подобны по двум углам? ∠О-общий, ∠ОА₁А= ∠ОВ₁В= ∠ОС₁С как соответственные углы при параллельных АА1 || ВВ1 || СС1 и секущей ОС. 1) Тогда соответственные стороны этих треугольников пропорциональны ОА/ОА₁= ОВ/ОВ₁=ОС/ОС₁ ⇒ 4/2 =(4+х)/(2+3) ⇒ (4+х)/5=2 ⇒ 4+х=10 ⇒х=6. 2) Тогда сторона ОС= 4+6+12=22, ОС₁- 2+3+у= 5+у 4) ОС/ОС₁= ОА/ОА₁ ⇒ 22/(5+у)=2 ⇒ 5+у=11, ⇒у=6