Это же элементарно, нам дам прямоугольник, его диагональ, которая равна 25 см, и одна его сторона, которая равна 7, диагональ делит прямоугольник на 2 прямоугольных треугольника, которые ещё и равны между собой, рассмотрим 1 из них: его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24 То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24
То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
ответ: АВ=3/2
АВ перпендикулярна плоскости альфа
АС, АВ - наклонная
Угол АСВ=30°
Угол АДВ=60°
Радиус окружности=√3
Найти: АВ
Т.к. АВ перпендикулярна плоскости альфа, то В проекция точки А на плоскости альфа, ВС и ВД - проекция АС и АД
На плоскости альфа, соответственно ВС принадлежит плоскости альфа
ВД принадлежит плоскости альфа, т.к. АВ перпендикулярна плоскости альфа,то ВС перпендикулярна плоскости альфа, ВД перпендикулярна плоскости альфа, значит АВ перпендикулярна ВС, АВ перпендикулярна ВД, и треугольники АВС и АВД - прямоугольные
Треугольник АВС:АВ/АС=sin угла АСВ
АС=АВ/sin угла АСВ=АВ/sin30°=АВ/1/2=2АВ
Треугольник АВД=АВ/АД=sin угла АДВ
АД=АВ/sin угла АДВ=АВ sin60°=AB/√3/2=2/√3AB
Треугольник АСД - прямоугольный (угол АСВ+угол АДВ=90°)
Значит: R=1/2СД, тогда CД=2*√3=2√3
По теореме Пифагора:
Треугольник АСД=АС²+АД²=СД²
2АВ²+2/√3АВ²=2√3²
4АВ²+4/3АВ²=12
16/3АВ²=12 |:3/16
АВ²=9/4
АВ=3/2
ответ: АВ=3/2