Высота, проведённая из вершины при основании - это высота к боковой стороне треугольника.
На произвольной прямой циркулем откладываем отрезок АС, равный заданной длине основания треугольника. По общепринятой методике строим срединный перпендикуляр этого отрезка, который пересекает его в т.О. АО=CО. Из т.А чертим окружность, радиус которой равен заданной длине высоты АН. Основание Н высоты будет расположено на построенной окружности. Т.к.высота должна быть перпендикулярна боковой стороне треугольника, на АВ как на диаметре с центром в т.О чертим окружность. Точку ее пересечения с первой окружностью обозначим Н. Угол АНС=90°, т.к. опирается на диаметр.
Проводим прямую из т. С через т. Н до пересечения со срединным перпендикуляром в т. В. Соединяем точки А и В. Искомый треугольник АВС с заданным основанием АС и высотой АН из вершины А при основании построен. В нем основание АВ равно заданной длине, треугольники АОВ=ВОС по двум катетам, следовательно, АВ=СВ, отрезок АН перпендикулярен боковой стороне и равен длине заданной высоты.
В зависимости от длины высоты при равном основании треугольник может получиться как остроугольным, так и тупоугольным, тогда высота из острого угла при основании пересечётся с продолжением боковой стороны.
∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°
Высота, проведённая из вершины при основании - это высота к боковой стороне треугольника.
На произвольной прямой циркулем откладываем отрезок АС, равный заданной длине основания треугольника. По общепринятой методике строим срединный перпендикуляр этого отрезка, который пересекает его в т.О. АО=CО. Из т.А чертим окружность, радиус которой равен заданной длине высоты АН. Основание Н высоты будет расположено на построенной окружности. Т.к.высота должна быть перпендикулярна боковой стороне треугольника, на АВ как на диаметре с центром в т.О чертим окружность. Точку ее пересечения с первой окружностью обозначим Н. Угол АНС=90°, т.к. опирается на диаметр.
Проводим прямую из т. С через т. Н до пересечения со срединным перпендикуляром в т. В. Соединяем точки А и В. Искомый треугольник АВС с заданным основанием АС и высотой АН из вершины А при основании построен. В нем основание АВ равно заданной длине, треугольники АОВ=ВОС по двум катетам, следовательно, АВ=СВ, отрезок АН перпендикулярен боковой стороне и равен длине заданной высоты.
В зависимости от длины высоты при равном основании треугольник может получиться как остроугольным, так и тупоугольным, тогда высота из острого угла при основании пересечётся с продолжением боковой стороны.