Пусть острый угол параллелограмма равен х°, тогда тупой угол параллелограма равен 180-х°, а угол между высотами параллелограмма (180-х°):3= 60 -х/3.Проведем из вершины тупого угла высоты к сторонам параллелограмма( одна - к большей стороне, другая - к продолжению меньшей). Получаем два прямоугольный треугольника с острыми углами х° и 90-х°.Теперь при вершине тупого угла образовались три угла, составим уравнение:90-х° + 90-х°+60 -х/3= 180 -х-х-х/3 = -604/3 х= 60х=45?Значит, острый угол параллелограмма равен 45?, а тупой 135?ответ: два острых угла по 45?, и два тупых угла по 135?.
66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²