Пробуем снова Вопрос 1 (рисунок прикреплён ниже) Дан куб ABCDA1B1C1D1. Определите, какие из следующих двугранных углов прямые: 1. AMLB 2. B1MKB 3. BCC1D1 4. A1ABC 5. BKA1D1 6. BKLD1
Вопрос 2 Выберите все свойства прямоугольного параллелепипеда: 1. в его основаниях лежат прямоугольники 2. его боковыми гранями являются прямоугольники 3. его гранями являются ромбы 4. его основания перпендикулярны ребрам 5. его диагонали равны 6. его диагонали перпендикулярны 7. диагонали оснований пересекаются под прямым углом 8. квадрат диагонали равен сумме квадратов его измерений
Вопрос 3 Определите, чему равна сторона куба, если его диагональ равна 6√3
Вопрос 4 Общая сторона АВ треугольников АВС и АВD равна 10 см. Плоскости этих треугольников взаимно перпендикулярны. Найдите CD, если треугольники равносторонние 1. 5√3 2. 5√5 3. 3√5 4. 5√2 5. 2√5
Вопрос 5 Точки А и В лежат на ребре данного двугранного угла, равного 120°. Отрезки АС и ВD проведены в разных гранях и перпендикулярны к ребру двугранного угла. Найти отрезок СD, если АВ = АС = ВD = 10 см.
1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
Угол АДВ=180-60=120 Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны). 3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5. 4.AC=AD+DC AC=5+5=10 5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой). 6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD DH=0.5*5=2.5 ответ:10; 2,5
2. Пусть боковые стороны будут a=х и b=х-3.
Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние:
х²-10²=(х-3)²-5²,
х²-100=х²-6х+9-25,
х=14,
а=14 см, b=14-3=11 см, c=5+10=15 cм.
Р=14+11+15=40 см.
ответ: б) 40 см.
3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3.
АВ=4√3/√3=4 см.
Периметр ромба: Р=4АВ=16 см.
ответ: а) 16 см.
Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны).
3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5.
4.AC=AD+DC
AC=5+5=10
5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой).
6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD
DH=0.5*5=2.5
ответ:10; 2,5