Прочти высказывания и оцени их верность. 1) Высота треугольника равна корню из разности квадратов гипотенузы и второй стороны —
.
2) Площадь квадрата равна квадрату его диагонали —
.
3) Площадь трапеции равна половине её основания —
.
4) Площадь параллелограмма равна полусумме его оснований —
.
Снизу
Объяснение:
Cм рисунок в приложении. Проведем высоты вы трапеции из вершин верхнего основания. Обозначим нижнее основание и боковые стороны х
Из прямоугольных треугольников находим катет
Катет равен гипотенузе х, умноженной на косинус 65°
(если бы 60°, то косинус 60° равен 0,5)
Тогда нижнее основание состоит их трех отрезков:
х·cos 50°+x+x·cos 50°=15 ⇒ x=15:(2cos 50°+`1)
cos 50°≈ 0,423
0,423х+х+0,423х=15
1,846 х=15
х≈8,67
Р≈8,67+8.67+8.67+15=42,01
Если все-таки 50° угол, то все гораздо проще:
0,5х+х+0,5х=15
2х=15
х=8
Р=8+8+8+15=40
y = 96, P = 196 - дано в условии, найдем x
2X=P-y
x= (P-y)/2
x=50
итого: x = 50, y = 96
нам не хватает высоты, для нахождения площади.
Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана)
по теореме Пифагора
h = √(x^2 - (y/2)^2)
h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h
тогда: S=1/2*hy = 96*14/2 = 672.
ответ: 672