ПРОДОЛЖИТЕ ИЗ ТЕОРЕМЫ О СУММЕ УГЛОВ ТРЕУГОЛЬНИКА сумма острых треугольников равна.
в равнобедренном треугольнике каждый угол равен.
в равносторонним треугольнике каждый угол равен.
в любом треуголке либо все углы равны, либо два угад острые, а третий тупой, или.
внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Дано:
АВС - треугольник
АМ = СМ
уг. АВС = 60°
уг. ВМА = 90°
Найти
уг. МВС - ?
уг. ВСА - ?
Решение
угол ВМА = 90° => уг. ВМС = 90°
т.е. ВМ | АС, а значит,
ВМ - высота, проведенная из вершины В на АС.
Также АМ = МС, а значит
ВМ - медиана, проведенная из вершины В на АС.
Если медиана треугольника является его высотой, то этот треугольник - равнобедренный.
ВМ - высота и медиана ∆АВС, =>
=> ∆АВС - равнобедренный, основание АС =>
=> ВМ - также является биссектрисой ∆АВС, т.е.
уг. АВМ = уг. СВМ
Так, как ∆АВС - равнобедренный, с основанием АС, то углы при основании - равны друг другу
уг. ВАС = уг. АСВ
и равны
угол ВАС = угол ВСА = 1/2 • (180 - угол АВС)
угол ВАС = угол ВСА = 1/2 • (180 - 60) = 60°
а значит ∆АВС - равносторонний.
угол MBC = 30°
угол ВCA = 60°
Объяснение:
ответ:
6 см
объяснение:
гипотенуза - значит треугольники прямоугольные.
сумма квадратов катетов = квадрату гипотенузы.
отсюда, 36 = х^2 + x^2 (треугольник равнобедренный = стороны равны, ^ - это степень)
36 = 2х^2 => 18 = x^2 => x = 3 корня из 2 = ав, вс, ad, dc
рассмотрим треугольник abd, ввиду перпендикулярности плоскостей треугольник прямоугольный и равнобедренный, т.к. ав=аd = 3 корня из 2.
отсюда, bd^2 = ав^2 + аd^2
bd = корень из ((3 корня из 2)^2 + (3 корня из 2)^2)
bd = корень из (18+18) = 6 см