Продовження бічних сторін АВ і СD трапеції АВСD перетинаються в точці К, DC:CK=2:5. ВС - менша основа трапеції. Знайти основи трапеції, якщо їх сума дорівнює 24см.
3. Пусть высота будет BH(нужно отметить Н на рисунке). Проведём высоту из точки С, будет она СЕ. Т.к. трапеция равнобедренная, то АН=DE. AH=BH=4 см, ведь угол А=45°, угол Н=90°, соответственно угол В=45° и треугольникк АВН равнобедренный. Из этого, AD=4+5+4 = 13 см.
1) ∠A=∠C=90°, т.к опираются на диаметр. Пусть точка К - точка пересечения хорды АС и диаметра. Рассмотрим тр-к АКО- прямоугольный, у которого катет в 2 раза меньше гипотенузы, значит один из углов 30°, а другой -60°. Рассмотрим тр-к АВО: он равнобедренный с углом 60°, а значит все его углы равны - 60°. Рассм. треугольник АВС - равнобедренный т.к ВК - медиана и высота, тогда ВК - бисектриса ∠АВС, тогда ∠АВС=120°. Четырехугольник ABCD - вписанный, тогда ∠В+∠D=180°, тогда ∠D=60° 2) Найдем боковую сторону треугольника по теореме Пифагора. Она равна - 15 см. Площадь этого треугольника равна ·9·24=108см², а периметр 54 см. r= где р - полупериметр r=4 см R= R= 12,5 см
1. S = ½×(4+8)×5 = ½×6×5 = 3×5 = 15 см².
2. S=150, h=S:(½×(a+b)) = 150:(½×(9+11)) = 150:(½×20) = 150:10 = 15 см.
3. Пусть высота будет BH(нужно отметить Н на рисунке). Проведём высоту из точки С, будет она СЕ. Т.к. трапеция равнобедренная, то АН=DE. AH=BH=4 см, ведь угол А=45°, угол Н=90°, соответственно угол В=45° и треугольникк АВН равнобедренный. Из этого, AD=4+5+4 = 13 см.
Найдём площадь: S=½×(5+13)×4 = ½×18×4 = 9×4 = 36 см².
4. Пусть одна часть будет х, тогда BC=3x, AD=4x.
S=½×(3x+4x)×5 = ½×7x×5 = 3,5x×5 = 17,5x -> 17,5x = 35.
x=2 см.
AD=4x = 4×2 = 8 см.
Рассм. треугольник АВС - равнобедренный т.к ВК - медиана и высота, тогда ВК - бисектриса ∠АВС, тогда ∠АВС=120°.
Четырехугольник ABCD - вписанный, тогда ∠В+∠D=180°, тогда ∠D=60°
2) Найдем боковую сторону треугольника по теореме Пифагора. Она равна - 15 см.
Площадь этого треугольника равна ·9·24=108см², а периметр 54 см.
r= где р - полупериметр r=4 см
R= R= 12,5 см