Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Треугольники АДС и АВС прямоугольные, так как содержат вписанные углы, опирающиеся на диаметр. Углы Д и В - прямые, АВ = 16+20 = 36 см. Находим катет ВС: ВС = √(39²-36²) = √(39-36)(39+36) = √(3*75) = 15 см. Косинус угла ВАС равен: cosBAC = (36²+39²-15²)/(2*36*39) = 2592/2808 = 12/13. Теперь находим отрезок ЕС по теореме косинусов: ЕС = √(16²+39²-2*16*39*(12/13)) = √(256+1524-1152) = √625 = 25 см. Треугольники АДЕ и ВЕС подобны по двум углам (прямому и вертикальному). Из подобия имеем пропорцию: ДЕ/АЕ = ВЕ/ЕС. Отсюда получаем: ДЕ = (АЕ*ВЕ)/ЕС = (16*20/25) = 64/5 = 12,8 см.
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2
Находим катет ВС: ВС = √(39²-36²) = √(39-36)(39+36) = √(3*75) = 15 см.
Косинус угла ВАС равен:
cosBAC = (36²+39²-15²)/(2*36*39) = 2592/2808 = 12/13.
Теперь находим отрезок ЕС по теореме косинусов:
ЕС = √(16²+39²-2*16*39*(12/13)) = √(256+1524-1152) = √625 = 25 см.
Треугольники АДЕ и ВЕС подобны по двум углам (прямому и вертикальному).
Из подобия имеем пропорцию:
ДЕ/АЕ = ВЕ/ЕС.
Отсюда получаем: ДЕ = (АЕ*ВЕ)/ЕС = (16*20/25) = 64/5 = 12,8 см.