Проекции наклонных AD и DC на плоскости α равны соответственно 5 см и 8 см, а угол между ними равен 60°. Вычисли расстояние между концами проекций наклонных. Дополнительный во название отрезка DB —
1. В параллелограмме противолежащие углы равны. Сумма углов, прилежащих к одной стороне параллелограмма равна 180°. Пусть х - меньший угол параллелограмма, х + 16° - больший. x + x + 16 = 180° 2x = 164° x = 82° 82° + 16° = 98° Углы параллелограмма: 82°, 82°, 98°, 98°.
2. Пусть х - меньшая сторона, 3х - большая сторона. Р = (x + 3x)·2 = 40 4x = 20 x = 5 см 3x = 15 см Стороны параллелограмма: 5 см, 5 см, 15 см, 15 см.
3. В параллелограмме противолежащие углы равны. Сумма углов, прилежащих к одной стороне параллелограмма равна 180°. ∠BAD = ∠BСD = 30°, значит ∠ADC = ∠ABC = 180° - 30° =150°. ΔBCH: ∠BHC = 90°, ∠BCH = 30°, ⇒ BC = 2CH = 10 см по свойству катета, лежащего напротив угла в 30°. Противолежащие стороны параллелограмма равны, значит AD = ВС = 10 см Периметр 48 см, значит сумма смежных сторон 24 см. AB = CD = 24 - AD = 24 - 10 = 14 см ответ: углы 30°, 30°, 150°, 150° стороны 10 см, 10 см, 14 см, 14 см.
Обозначим пирамиду ABCD. Из вершины А в основании пирамиды проведем биссектрису АМ, она является и высотой (по свойству биссектрисы правильного треугольника), угол DAM=30 градусов (по условию боковое ребро наклонено к основанию под углом в 30 градусов). DH-высота пирамиды, точка Н - точка пересечения биссектрис треугольника АВС. Рассмотрим прямоугольный треугольник АВС, в нем : AD=9см (гипотенуза),угол DAH=30 градусов, значит, катет DH=1/2 AD=4,5 см, а DH- высота пирамиды. ответ : высота пирамиды = 4,5 см.
Пусть х - меньший угол параллелограмма,
х + 16° - больший.
x + x + 16 = 180°
2x = 164°
x = 82°
82° + 16° = 98°
Углы параллелограмма: 82°, 82°, 98°, 98°.
2.
Пусть х - меньшая сторона, 3х - большая сторона.
Р = (x + 3x)·2 = 40
4x = 20
x = 5 см
3x = 15 см
Стороны параллелограмма: 5 см, 5 см, 15 см, 15 см.
3. В параллелограмме противолежащие углы равны. Сумма углов, прилежащих к одной стороне параллелограмма равна 180°.
∠BAD = ∠BСD = 30°, значит ∠ADC = ∠ABC = 180° - 30° =150°.
ΔBCH: ∠BHC = 90°, ∠BCH = 30°, ⇒
BC = 2CH = 10 см по свойству катета, лежащего напротив угла в 30°.
Противолежащие стороны параллелограмма равны, значит
AD = ВС = 10 см
Периметр 48 см, значит сумма смежных сторон 24 см.
AB = CD = 24 - AD = 24 - 10 = 14 см
ответ: углы 30°, 30°, 150°, 150°
стороны 10 см, 10 см, 14 см, 14 см.